

Structure

 Clamping type **XRP-C** → P.208

Material/Finish RoHS Compliant XRP-C Main Body A7075 SCM435 Hex Socket Head Cap Screw Ferrosoferric Oxide Film

Selection

 Selection based on shaft diameter and rated torque The area bounded by the shaft diameter and rated torque indicates is the selection size.

100 10 XRP-19C 0.1 10 12 14 16

• Selection example

In case of selected parameters of shaft diameter of ϕ 14 and load torque of 9 N·m, the selected size is XRP-39C

Applicable motors

	XRP-C
Servomotor	0
Stepping motor	0
General-purpose motor	_

O: Excellent O: Very good

Property

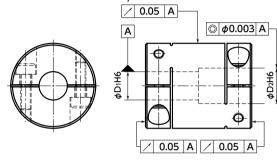
	XRP-C
Zero Backlash	0
High Torque	0
High Torsional Stiffness	0

O: Excellent O: Very good

- This is a high precision rigid coupling.
- Coaxiality, bore diameter, and run out have been pursued to the ultimate level.
- An inspection report is attached to all products before shipment.
- Light weight and ultra small moment of inertia. High
- This is a shaft fastening structure with consideration of rotational balance and unbalance is ultra small.
- Extra super duralumin (A7075) featuring the highest strength among aluminum alloy is adopted.

Application

High precision measurement device/High precision XY stage/Encoder


• Part number specification

Change to Stainless Steel Screw → P.790 Please feel free to contact us Available / Add'l charge Available / Add'l charge

Commitment to high precision

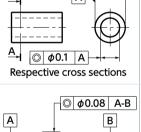
- \bullet The coaxiality of both bores is not more than 3 μ m.
- Bore diameter tolerance is H6.
- Radial run out and run out of end face against bore are not more than $50 \mu m$.

Precision assurance by total inspection

- The inspection is conducted in an environment of constant temperature and humidity.
- Inspection item: Bore diameters D₁ and D₂ Coaxiality of bores D₁ and D₂ Radial run out and run out of end face against bore
- 3D measurement device:

UPMC850CARAT SuperAcc made by Carl Zeiss Max. allowable instruction error 0.7+L/600 µm Measurement precision Max. allowable probing error 0.6μm

Measurement environment Temperature 20±1°C Humidity 50±10%


Concentricity tolerance and coaxiality tolerance

Definition of tolerance zone If the symbol ϕ is attached to the tolerance value, the tolerance zone is regulated by a circle of diameter t. The center of circular tolerance zone Datum point A

coincides with datum A If the symbol ϕ is attached to the tolerance value, the tolerance zone is regulated by a cylinder of diameter t. The axis line of cylindrical tolerance zone coincides with datum A.

GOOD DESIGN

Example and explanation of instruction method The actual

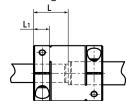
(reproduced) center of the outside circle must be within the circle concentric with datum circle A and of 0.1 in diameter.

The actual (reproduced) shaft line of inside cylinder must be within a cylindrical tolerance area coaxial with common datum axis line A-B and of 0.08 in diameter.

• Excerpt from JIS B 0021

0

0


• Shaft insertion length

The shaft insertion length should be not less than L₁ (clamp portion) and not more than L.

The insertion length of a shaft to maintain the high precision should be L dimension if possible.

However, be careful so that both shaft ends do not interfere with each other.

If the shaft insertion length is less than L₁, it may derange the coaxiality or generate vibration when fastening the shaft.

