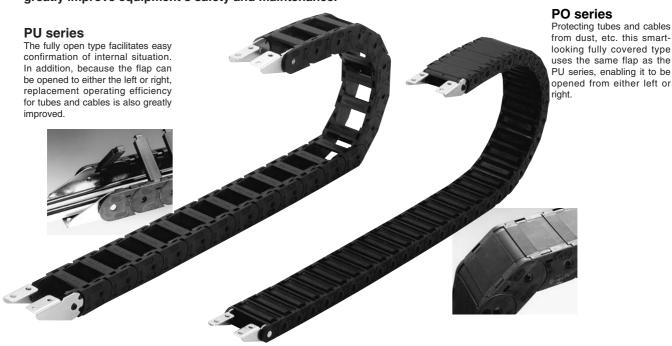


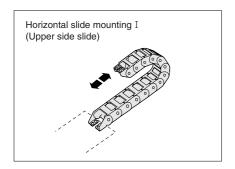
KOGANEI

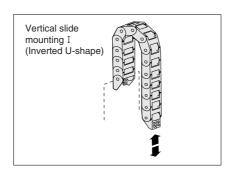
ACCESSORIES GENERAL CATALOG

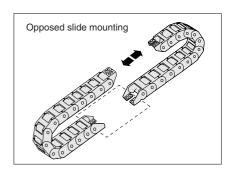
AIR TREATMENT, AUXILIARY, VACUUM, **AND FLUORORESIN PRODUCTS**

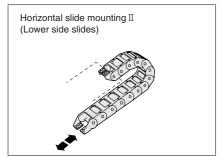
PLACHAIN DUCTS CONTENTS

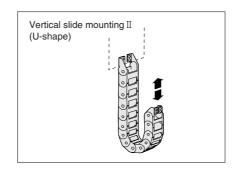

Features ————————————————————————————————————	— 603
Specifications, Order Codes —	— 604
Mounting Bracket Specifications, Order Codes —————	— 605
Dimensions of Fully Open Type —	— 606
Dimensions of Fully Covered Type —	 608
Handling Instructions and Precautions ——————	<u> </u>
Selection Guideline ————————————————————————————————————	610

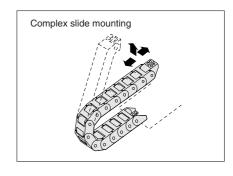

PLACHAIN DUCTS

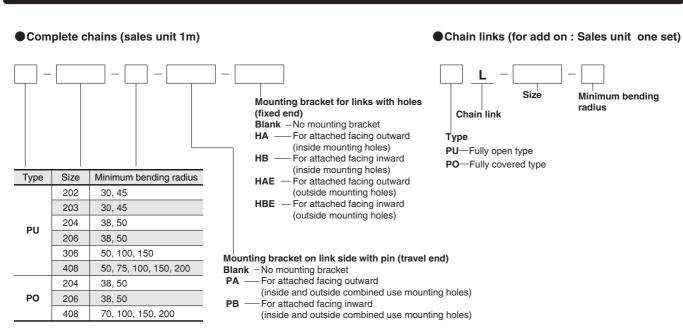

PU Series, PO Series


Smoothly protect and guide the tubes and cables in the movable areas of equipment.


The plachain duct, made of lightweight, highly durable engineering plastic, quietly and smoothly follows the motions of the movable areas of high-performance industrial robots, machine tools, transfer equipment, etc. It combines and arranges tubes and cables, with protection and guidance functions that prevent twisting and bending, to greatly improve equipment's safety and maintenance.







Series			PU s	eries			PO series		
Basic model	PU PU 202 203		PU PU 204 206		PU PU 306 408		PO PO 206		PO 408
Minimum bending mm [in.]	30 [1.18] 45 [1.77]		38 [1.50] 50 [1.97]		50 [1.97] 50 [3.94] 150 [5.91] 50 [1.97] 75 [2.95] 100 [3.94] 150 [5.91] 200 [7.87]		38 [1.50] 50 [1.97]		70 [2.76] 100 [3.94] 150 [5.91] 200 [7.87]
Chain link cross section dimensions	PU202		PU204		PU306		PO204 Post Post		8
	PU203		PU206		PU408 \$\frac{\phi 22}{24} \frac{\phi 24}{24} \frac{\phi 42}{24} \frac		PO206	<u> </u>	
Note:The $\phi \square$ figures in the chain link show the maximum cable or tube outer diameter.									
Pitch mm [in.]	25 [0	0.98]	32 [1.26]	45 [1.77]	26 [1.02]	45 [1.77]
Number of links (per 1m [3.28ft.])	40		32		23		39		23
Maximum free span m [ft.]	0.75 [2.46]		1.0 [3.28]		1.5 [4.92]		0.75 [2.46]		1.5 [4.92]
Maximum travel stroke m [ft.]	1.4 [4.59]		1.9 [6.23]		2.9 [9.51]		1.4 [4.59]		2.9 [9.51]
Maximum cable and tube mass kg/m [lb./ft.]	• •		1 [0.672]		4 [2.69] 5 [3.36]		1.25 [0.840]		5 [3.36]
Maximum speed m/s [ft./sec.]	2.5 [8.20]		2.5 [8.20]		2.5 [8.20]		2.5 [8.20]		2.5 [8.20]
Allowable cross section volume rate			I		Max. 60%		T		
Mass kg/m [lb./ft.]	0.25 [0.168]	0.26 [0.175]	0.5 [0.336]	0.56 [0.376]	0.64 [0.430]	1.1 [0.739]	0.5 [0.336]	0.6 [0.403]	1.36 [0.914]
Operating temperature range °C [°F]	—10~80 [14~176]								
Materials			A: 1	and the second second	Nylon or PBT	ana andra la cata	- d et e		
Environment conditions Allowable content volume ratio mm² [in:]	Max. 118 [0.183]	Max. 168 [0.260]	Max. 168 [0.260]	Max. 336 [0.521]	alkali atmosphe Max. 634 [0.983]	Max. 853 [1.322]	Max. 172 [0.267]	Max. 328 [0.508]	Max. 870 [1.348]
Allowable content volume ratio mm² [in?]	Wdx. 110 [U.103]	WIGH. 100 [U.20U]	Wax. 100 [U.20U]	Wdx. 330 [U.321]	Wax. 034 [0.963]	Wdx. 003 [1.322]	Wdx. 1/2 [U.20/]	IVIAX. 328 [U.308]	IVIdX. 0/U [1.348]

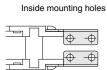
Remark: The figures below show the piping tube cross-section area (mm² [in²]). ϕ 4: 12.5 [0.0194] ϕ 6: 28.2 [0.0437] ϕ 8: 50.2 [0.0778] ϕ 10: 78.5 [0.1217] ϕ 12: 113 [0.175] ϕ 16: 201 [0.312]

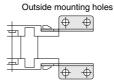
Order Codes

Mounting Bracket Specifications

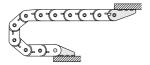
Mounting position variations

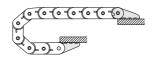
Mounting for link with pin (travel end)


end) Mounting for link with hole (fixed end)



Mounting hole position variations

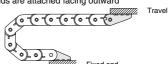



(-PA and -PB apply to inside and outside combined use mountings.)

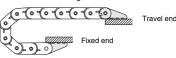
Variations for secured surfaces

Attached facing outward

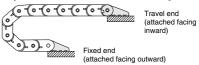
Attached facing inward

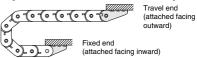


(Mounting dimensions are identical. The secured surface facings are on opposite sides.)


Brackets for these two series can be used as mounting brackets for the ${\bf PU}$ series.

Mounting examples

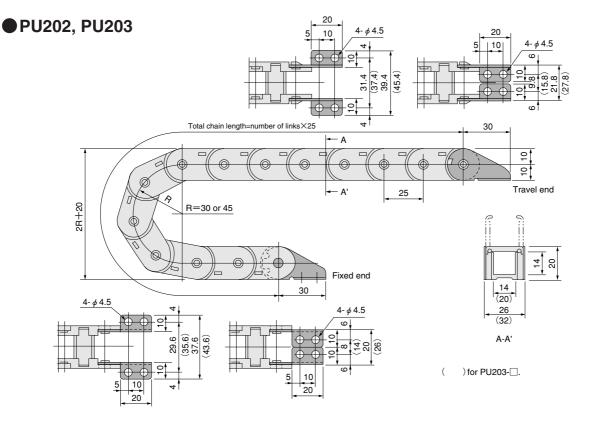

Both travel and fixed ends are attached facing outward


Both travel and fixed ends are attached facing inward

Travel end is attached facing inward, and fixed end is attached facing outward

Travel end is attached facing outward, and fixed end is attached facing inward

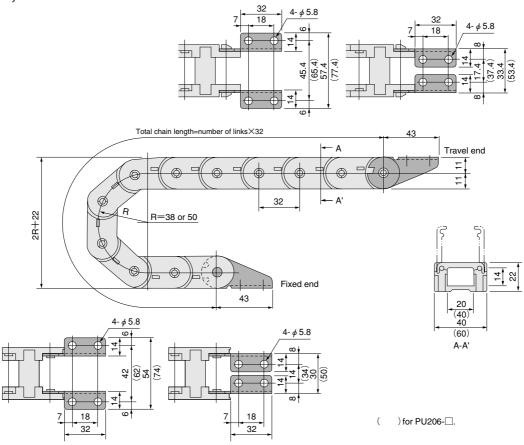
Mounting Bracket Order Codes


Mounting bracket (For one end only, Sales unit one set)

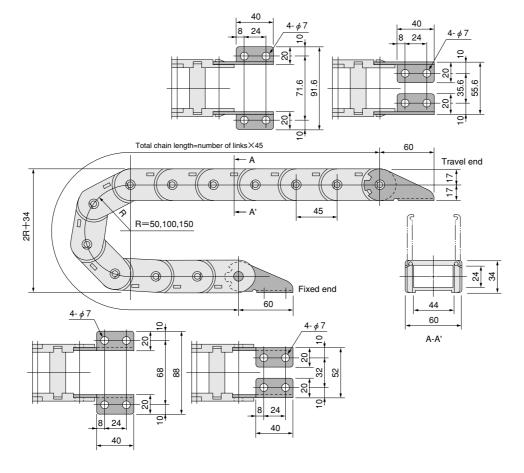
In the table PUM-—-shows the models of the mounting brackets. Use the descriptions below to select the model.

- 1. Select type (PU or PO)
- 2. Select the size
- 3. Select what type of connection link (Travel end/Fixed end)
- 4. Select the facing direction of bracket (Inside mounting holes/Outside mounting holes)
- 5. Select the attaching direction of bracket (Attached facing outward/Attached facing inward)
- 6. Select the mounting bracket model

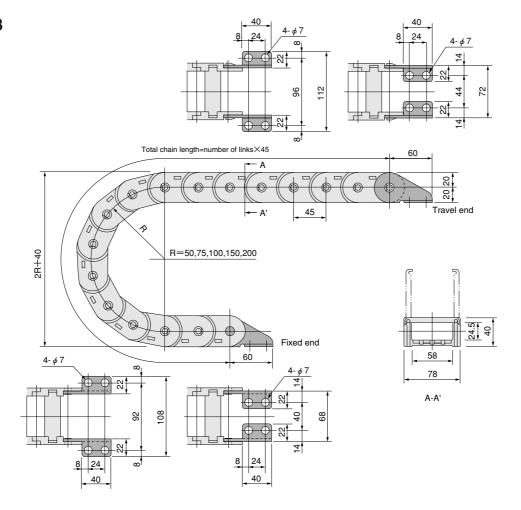
Mounting bracket model

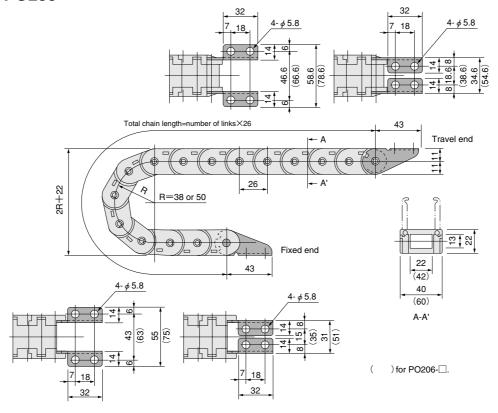

	unting link (li				Bracket with hole for travel end (link with pin)					Bracket with pin for fixed end (link with hole)	
	cket f	•	9		Inside mounting holes		Outside mounting holes		Inside mounting holes		Outside mounting holes
	unting		cket ction	Attached facing outward	Attached facing inward	Attached facing outward	Attached facing inward	Attached facing outward	Attached facing inward	Attached facing outward	Attached facing inward
			202	PUM-202-PA	PUM-202-PB	PUM-202-PA	PUM-202-PB	PUM-202-HA	PUM-202-HA	PUM-202-HAE	PUM-202-HAE
	PU		204 206	PUM-204-PA	PUM-204-PB	PUM-204-PA	PUM-204-PB	PUM-204-HA	PUM-204-HA	PUM-204-HAE	PUM-204-HAE
Туре		Size	306	PUM-306-PA	PUM-306-PA	PUM-306-PA	PUM-306-PA	PUM-306-HA	PUM-306-HB	PUM-306-HAE	PUM-306-HBE
			408	PUM-408-PA	PUM-408-PA	PUM-408-PA	PUM-408-PA	PUM-408-HA	PUM-408-HB	PUM-408-HAE	PUM-408-HBE
	РО		204 206	PUM-204-PA	PUM-204-PB	PUM-204-PA	PUM-204-PB	PUM-204-HA	PUM-204-HA	PUM-204-HAE	PUM-204-HAE
			408	PUM-408-PA	PUM-408-PB	PUM-408-PA	PUM-408-PB	PUM-408-HA	PUM-408-HB	PUM-408-HAE	PUM-408-HBE

●PU204, PU206

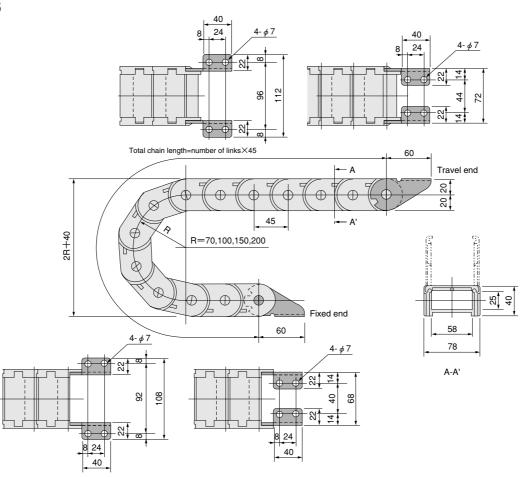


PLACHAIN DUCTS





●PU408



●PO408

PLACHAIN DUCTS

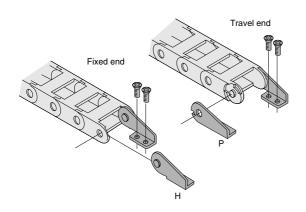
Mounting

Calculating the Number of Links

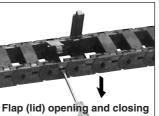
Use the following equation to calculate the number of links.

$$n = \frac{\frac{S}{2} + \pi R + 2K}{P}$$

- $n\,$: Number of links (Rounded up to the nearest whole number.)
- S: Travel stroke (mm)
- R: Bending radius (mm)
- K: Margin (mm)
- P: Pitch (mm)


, K .l.	Travel stroke	
	Free span	Travel end
	Fixed end S 2	2

Series	R	K	πR	π R+2K	Р
PU202, 203	30 45	Min. 25	94.2 141.3	Min. 144.2 Min. 191.3	25
PU204, 206 PO204, 206	38 50	Min. 30	119.3 157.0	Min. 179.3 Min. 217.0	32 26
PU306, 408 PO408	50 70 75 100 150 200	Min. 50	157.0 219.8 235.5 314.0 471.0 628.0	Min. 257.0 Min. 319.8 Min. 335.6 Min. 414.0 Min.571.0 Min.728.0	45


Attaching the Mounting Brackets

Attach the mounting bracket with holes (P) on the travel end of plachain duct (link with pin), and attach the mounting bracket with pin (H) on the fixed end (link

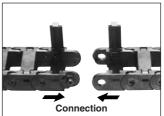
Insert the mounting bracket firmly into the link, and secure in place with mounting screws to prevent the body from twisting.

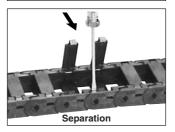
Link Connection and Separation

(lid)

To open the flap, insert a flat blade screwdriver into the rectangular hole on either side of the link, and push up the flap hook by trying the principle of the lever. To close, use fingers to push the flap down.

Opening and closing the PU


series (fully open type) flap


Connection

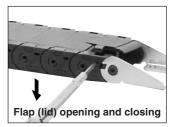
First, open up the flaps on the two links to be connected, then align the links and push them together from both sides.

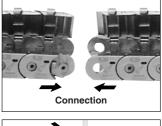
Separation

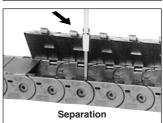
First, open up the flaps on the two links to be separated, then insert a flat blade screwdriver into the gap between the links to push on as a lever and force them apart.

Opening and closing the PO series (fully covered type) flap

In the connected condition, the flaps for each link are in an overlay configuration. When opening or closing the flaps of the connected links, bend the links connection until the bending radius is as small as possible.

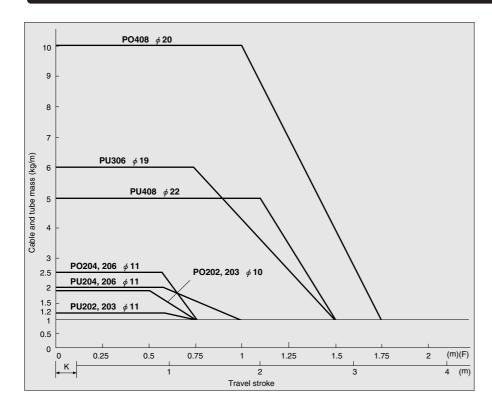

To open the flap, insert a flat blade screwdriver into the rectangular hole on either side of the link, and push up the flap hook by trying the principle of the lever. To close, use fingers to push the flap down, taking care that the flaps overlay.


Connection


First, open up the flaps on the two links to be connected, then align the links and push them together from both sides.

Separation

First, open up the flaps on the two links to be separated, then insert a flat blade screwdriver into the gap between the links to push on as a lever and force them apart.



Operating Conditions

Ensure that the sum of the cross-section occupied by the cables and tubes to be placed into the plachain duct is 60% or less of the plachain duct cross-

Use at greater than 60% could result in cut cables (cabtyres, etc.) and broken tubes.

Plachain duct performance graph

Based on the total mass, maximum outer diameter, and travel stroke of the cables and tubes used, select the optimum series model from the performance graph shown at left.

Ensure that the plachain duct bending radius is larger than the cable and tube bending radius.

- Notes: 1. F=Free span
 The length capable of withstanding a load of
 1kg/m [0.672lb./ft.].
 2. The K dimension includes a margin length.

 - 3. This graph assumes that the fixed end is located in the center of the travel stroke.

1 kg/m = 0.672 lb./ft.1m = 3.28ft.