KOGANEI

ACTUATORS GENERAL CATALOG

MULTI MOUNT CYLINDERS CONTENTS

Basic Type and Configuration	—— 95
Standard Cylinders	
Specifications	97
Order Codes	99
Inner Construction and Major Parts	100
Dimensions of Double Acting Type	101
Dimensions of Single Acting Push Type	104
Dimensions of Single Acting Pull Type	107
Dimensions of Double Acting Double Rod Type	
Non-rotating Cylinders	
Specifications —	113
Order Codes	115
Inner Construction and Major Parts	116
Dimensions of Non-rotating Double Acting Type	—— 117
Dimensions of Non-rotating Single Acting Push Type	
Dimensions of Non-rotating Single Acting Pull Type	121
Dimensions of Non-rotating Double Acting	
Double Rod Type	—— 123
Mounting Brackets	125
Sensor Switches	126
Handling Instructions and Precautions	129

MULTI MOUNT CYLINDERS

Caution Before use, be sure to read the "Safety Precautions" on p. 57.

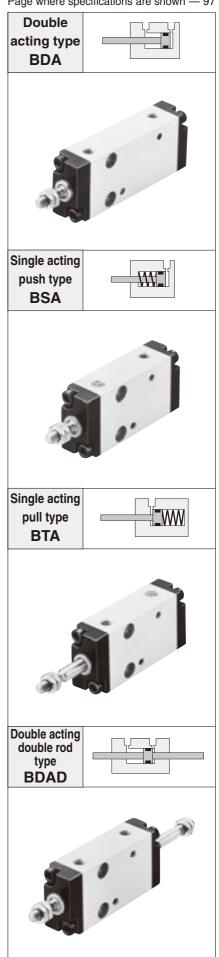
Multi functional support for small movements, **MULTI MOUNT CYLINDERS**

In addition to the directly installed side mounting type, 3 types of mounting brackets provide appropriate responses for various mounting requirements.

Moreover, this is a design that secures a high degree of parallel and perpendicular accuracy in relation to the piston rod axial center and mounting surface in any mounting type.

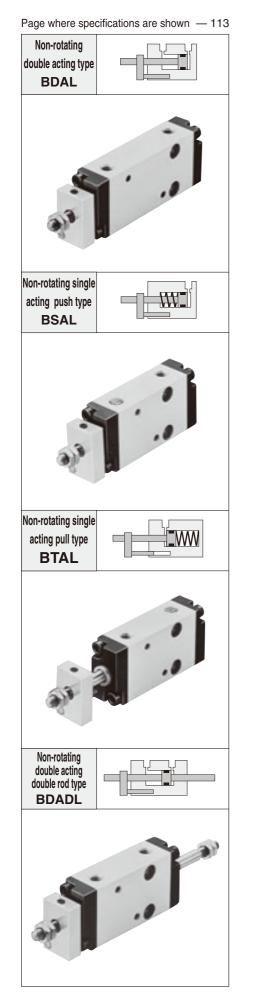
This combination of a square and compact body with mounting brackets has further broadened the degree of freedom for equipment design.

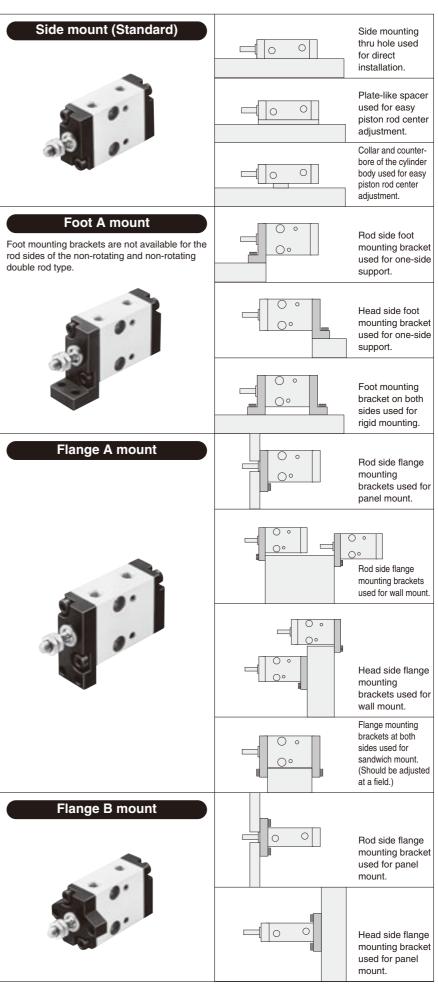
• Even while preserving the basic design of previous types, we have made overall improvements through the addition of a built-in rubber bumper and other changes.


We have not only expanded the series but have also boosted reliability and utility.

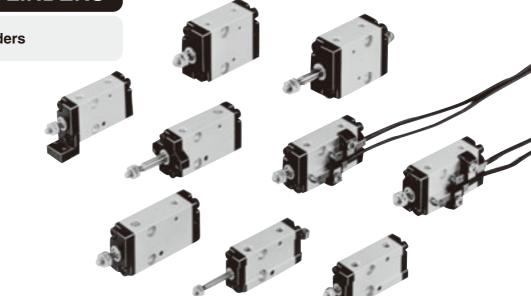
- Even the non-rotating type is now available in the double acting type, the single acting push/pull types, and the double acting double rod type, to respond to diversified needs with high non-rotating precision by the guide pin.
- Although the 3 types of sensor switches are all compact with cross section dimensions of 24mm [0.157in.], mounting to the cylinder and adjusting the position are easy.

Comes with a movement indicator lamp that makes it possible to monitor movement from 4 directions, providing multi functional support for small movements


Basic Type and Configuration


Page where specifications are shown - 97

Mounting Bracket Configuration and Application:


For the order codes of mounting brackets only, see p.125.

MULTI MOUNT CYLINDERS

Standard Cylinders

Symbols

Double acting type (BDA)

Single acting push type (BSA)

•Single acting pull type (BTA) •Double acting double rod type (BDAD)

Cylinder Thrust

										١	l [lbf.]
Bore size	Piston rod	Onera	peration Pressure Air pressure MPa [ps						psi.]		
mm [in.]	diameter mm [in.]	type		mm ² [in. ²]	0.1 [15]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]	0.6 [87]	0.7 [102]
		Double	Push side	28.2 [0.0437]	-	5.6 [1.26]	8.5 [1.91]	11.3 [2.54]	14.1 [3.17]	16.9 [3.80]	19.7 [4.43]
6	3	acting type	Pull side	21.2 [0.0329]	_	4.2 [0.94]	6.4 [1.44]	8.5 [1.91]	10.6 [2.38]	12.7 [2.85]	14.8 [3.33]
[0.236]	[0.118]	Single acting p	oush type	28.2 [0.0437]	_	1.7 [0.38]	4.6 [1.03]	7.4 [1.66]	10.2 [2.29]	13 [2.92]	15.8 [3.55]
		Single acting p	oull type	21.2 [0.0329]	_	-	2.5 [0.56]	4.6 [1.03]	6.7 [1.51]	8.8 [1.98]	10.9 [2.45]
	5 [0.197]	Double	Push side	78.5 [0.1217]	7.9 [1.78]	15.7 [3.53]	23.6 [5.31]	31.4 [7.06]	39.3 [8.83]	47.1 [10.59]	55 [12.36]
10		acting type	Pull side	58.9 [0.0913]	5.9 [1.33]	11.8 [2.65]	17.7 [3.98]	23.6 [5.31]	29.5 [6.63]	35.3 [7.94]	41.2 [9.26]
[0.394]		Single acting p	oush type	78.5 [0.1217]	-	7.9 [1.78]	15.8 [3.55]	23.6 [5.31]	31.5 [7.08]	39.3 [8.83]	47.2 [10.61]
		Single acting p	oull type	58.9 [0.0913]	_	4 [0.90]	9.9 [2.23]	15.8 [3.55]	21.7 [4.88]	27.5 [6.18]	33.4 [7.51]
		Double	Push side	201 [0.312]	20.1 [4.52]	40.2 [9.04]	60.3 [13.56]	80.4 [18.07]	100.5 [22.59]	120.6 [27.11]	140.7 [31.63]
16	6	acting type	Pull side	172 [0.267]	17.2 [3.87]	34.4 [7.73]	51.6 [11.60]	68.8 [15.47]	86 [19.33]	103.2 [23.20]	120.4 [27.07]
[0.630]	[0.236]	Single acting p	oush type	201 [0.312]	_	18.6 [4.18]	38.7 [8.70]	58.8 [13.22]	78.9 [17.74]	99 [22.26]	119.1 [26.77]
		Single acting p	oull type	172 [0.267]	_	12.8 [2.88]	30 [6.74]	47.2 [10.61]	64.4 [14.48]	81.6 [18.34]	98.8 [22.21]
Note: Fo	r the dou	ble actir	ng dou	uble roc	type	, see	the d	louble	actin	ig typ	e pull

Note: For the double acting double rod type, see the double acting type pul side.

Spring Return Force (Only for Single Acting Type)

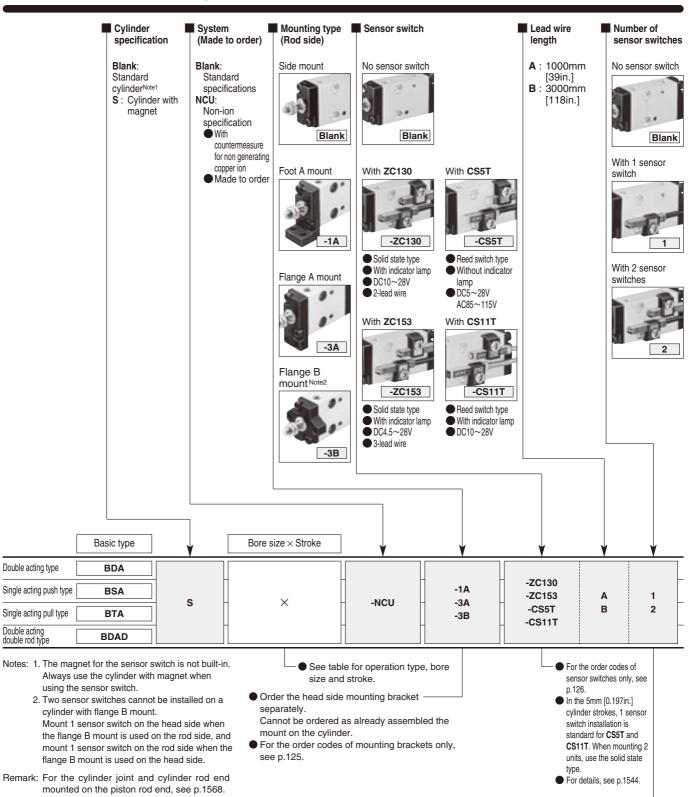
				N [lbf.]
Item		Zero stroke		End of stroke
Bore size mm [in.]	5	10	15	5, 10, 15
6 [0.236]	2.9 [0.65]	2.5 [0.56]	2.0 [0.45]	3.9 [0.88]
10 [0.394]	6.9 [1.55]	4.9 [1.10]	2.9 [0.65]	7.8 [1.75]
16 [0.630]	17.7 [3.98]	13.7 [3.08]	9.8 [2.20]	21.6 [4.86]

Specifications

	e size mm [in.]	6 [0.236]	10 [0.394]	16 [0.630]				
Item								
Media		Air						
	Double acting type	0.15~0.7 [22~102]						
Operating pressure range	Single acting push type	0.2~0.7 [29~102]	0.15~0.7 [22~102]	0.15~0.7 [22~102]				
MPa [psi.]	Single acting pull type	0.3~0.7 [44~102]	0.2~0.7 [29~102]	0.2~0.7 [29~102]				
	Double acting double rod type	0.2~0.7 [29~102]	0.15~0.7 [22~102]	0.1~0.7 [15~102]				
Proof pressure	MPa [psi.]	1.03 [149]						
Operating temperature r	ange °C [°F]	0	~60 [32~140	0]				
Operating speed rang	ge mm/s [in./sec.]	50 <i>-</i>	~500 [2.0~19	9.7]				
Cushion		F	Rubber bumpe	r				
Lubrication		Not required (If lubrication is required, use Turbine Oil Class 1 [ISO VG32] or equivalent.)						
Port size		M5×0.8						
Stroke tolerance	mm [in.]		⁺¹ [^{+0.039}]					

Operation Type, Bore Size, and Stroke

		mm
Operation type	Bore size	Standard strokes
	6	
Double acting type	10	5, 10, 15, 20, 25, 30
	16	
	6	
Single acting push type Single acting pull type	10	5, 10, 15
Onigie deting pair type	16	
	6	
Double acting double rod type	10	5, 10, 15, 20, 25, 30
	16	


Double acting type	Single acting push type	Single acting pull type	Double acting double rod type	
Page where dimensions are shown — 101	Page where dimensions are shown ————————————————————————————————————	Page where dimensions are shown ——107	Page where dimensions are shown — 110	INDERS
		and a		MULTI MOUNT CYLIN
BDA	BSA	BTA	BDAD	

Mass

												g [oz.]
			Mass of s	ide mount			Addition	al mass				
Operation	Bore size	Stroke	Standard	Cylinder	Double	With 1 sensor switch	Rod sid	e mounting	bracket	Head sid	le mounting	g bracket
type	mm [in.]	mm	cylinder	with	rod	(Only for cylinder with magnet type)	Foot A	Flange A	Flange B	Foot A	Flange A	Flange B
				magnet		ZC130 ZC153 CS5T CS11T	mount	mount	mount	mount	mount	mount
		5	21 [0.74]	24 [0.85]								
		10	24 [0.85]	27 [0.95]				1 [0.04]				
	6	15	27 [0.95]	30 [1.06]	4 [0.14]	20 [0.71]	10 [0.35]		1 [0.04]	15 [0.53]	5 [0.18]	5 [0.18]
	[0.236]	20	30 [1.06]	33 [1.16]	.[0.1.1]	_0[0111]	[0.00]	. [0:0:1]	. [0:0.1]	10 [0.00]	0 [0110]	0 [0110]
		25	33 [1.16]	36 [1.27]								
		30	36 [1.27]	39 [1.38]								
be		5	37 [1.31]	43 [1.52]								
g ty		10	41 [1.45]	47 [1.66]								
ctin	10	15	45 [1.59]	51 [1.80]	8 [0.28]	20 [0.71]	16 [0.56]	2 [0.07]	2 [0.07]	24 [0.85]	8 [0.28]	8 [0.28]
Double acting type	[0.394]	20	49 [1.73]	55 [1.94]	0 [0.20]	20 [0.7 1]	10 [0.00]	2 [0.07]	2 [0.07]	24 [0.00]	0 [0.20]	0 [0.20]
qnc		25	53 [1.87]	59 [2.08]								
ă		30	57 [2.01]	63 [2.22]								
		5	79 [2.79]	92 [3.25]								
		10	86 [3.03]	99 [3.49]								
	16	15	93 [3.28]	106 [3.74]	16 [0.56]	20 [0.71]	33 [1.16]	4 [0.14]	4 [0.14]	53 [1.87]	17 [0.60]	17 [0.60]
	[0.630]	20	100 [3.53]	113 [3.99]	10 [0.50]	20 [0.71]	55[1.10]	4 [0.14]	4 [0.14]	55[1.07]	17 [0.00]	17 [0.00]
		25	107 [3.77]	120 [4.23]								
		30	114 [4.02]	127 [4.48]								
		5	25 [0.88]	28 [0.99]							5 [0.18]	
be	6 [0.236]	10	28 [0.99]	31 [1.09]	—	20 [0.71]	10 [0.35]	1 [0.04]	1 [0.04]	15 [0.53]		5 [0.18]
Single acting push type	[0.200]	15	31 [1.09]	34 [1.20]								
snd		5	43 [1.52]	49 [1.73]				2 [0.07]	2 [0.07]			
ing	10 [0.394]	10	47 [1.66]	53 [1.87]	-	20 [0.71]	16 [0.56]			24 [0.85]	8 [0.28]	8 [0.28]
act	[0.334]	15	51 [1.80]	57 [2.01]								
Igle		5	90 [3.17]	103 [3.63]								
Sir	16 [0.630]	10	97 [3.42]	110 [3.88]	—	20 [0.71]	33 [1.16]	4 [0.14]	4 [0.14]	53 [1.87]	17 [0.60]	17 [0.60]
	[0.000]	15	104 [3.67]	117 [4.13]								
		5	27 [0.95]	30 [1.06]								
Ð	6 [0.236]	10	30 [1.06]	33 [1.16]	_	20 [0.71]	10 [0.35]	1 [0.04]	1 [0.04]	15 [0.53]	5 [0.18]	5 [0.18]
Single acting pull type	[0.230]	15	33 [1.16]	36 [1.27]								
Ind		5	46 [1.62]	52 [1.83]								
ting	10 [0.394]	10	50 [1.76]	56 [1.98]	_	20 [0.71]	16 [0.56]	2 [0.07]	2 [0.07]	24 [0.85]	8 [0.28]	8 [0.28]
act	[0.394]	15	54 [1.90]	60 [2.12]								
Jgle		5	100 [3.53]	113 [3.99]								
Si	16	10	107 [3.77]	120 [4.23]	_	20 [0.71]	33 [1.16]	4 [0.14]	4 [0.14]] 53 [1.87]	17 [0.60]	17 [0.60]
	[0.630]	15	114 [4.02]	127 [4.48]		-						

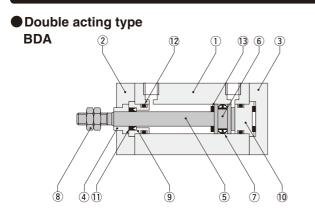
Calculation example: To add 2 sensor switches to the cylinder with magnet, double acting type BDAS10×20, $55+(20\times2)=95g$ [3.35oz.] Remark: There are 2 types of sensor switch lead wire lengths. A: 1000mm [39in.], B: 3000mm [118in.]

Order Codes for Standard Cylinders

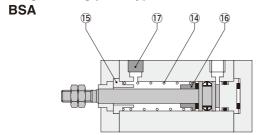
• In the 5mm [0.197in.] cylinder strokes, 1 sensor switch installation is standard for the reed switch type (CS5T, CS11T).

Additional Parts (To be ordered separately)

- Side mount Foot A mount Flange A (Head cover) mount mount
- The photographs above show head side mounting brackets.
- For the order codes, see p.125.
- Comes with 2 mounting screws.

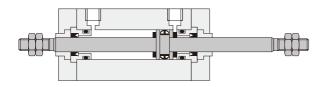

- Shield plate
- For cylinder with magnet.
 For the order code, see
 - p.128.Comes with 2 mounting
 - Comes with 2 mounting screws.

Operation Type, Bore Size, and Stroke

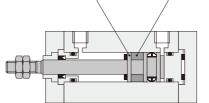

Operation type	Bore size	Standard strokes
De la caller	6	
Double acting type	10	5, 10, 15, 20, 25, 30
type	16	
Single acting	6	
push type Single acting	10	5, 10, 15
pull type	16	
De ble estas	6	
Double acting double rod type	10	5, 10, 15, 20, 25, 30
	16	

mm

99



• Single acting push type



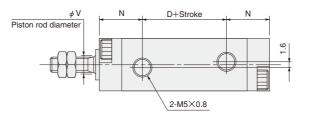
• Single acting pull type BTA 17 15

Double acting double rod type BDAD

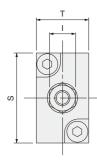
Cylinder with magnet double acting type BDAS

Major Parts and Materials

NIE	Darta	Materia	als				
No.	Parts	Standard specification	Non-ion specification				
1	Body	Aluminum alloy (anodized)	←				
2	Rod cover Note	PBT	Aluminum alloy (black anodized)				
3	Head cover Note	РВТ	Aluminum alloy (black anodized)				
4	Rod bushing	Oil impregnated bronze	Special steel				
5	Piston rod	Stainless steel	←				
6	Piston	Brass	Aluminum				
7	Piston seal	Synthetic rubber (NBR)	←				
8	Rod end nut	Steel (electric nickel plated)	←				
9	Seal case	Brass	Special steel				
10	Сар	Polyacetal	←				
1	Rod seal	Synthetic rubber (NBR)	←				
12	O-ring	Synthetic rubber (NBR)	←				
13	Bumper	Synthetic rubber (NBR)	←				
14	Spring	Steel (zinc plated)	←				
15	Spring holder	Brass	Aluminum				
16	Collar	Brass	Aluminum				
17	Filter	Foamed metal	←				
18	Support	Brass	Aluminum				
19	Magnet	ϕ 6: Sintered alloy magnet ϕ 10 · ϕ 16: Plastic magnet	←				

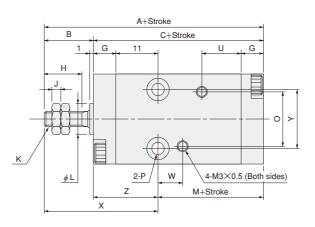

Note: Only the foot A mount is steel (black zinc plated).

Flange A and flange B mounts are aluminum alloy (black anodized).

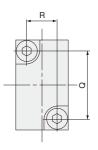

Seals

Parts Bore size mm [in.]	Rod seal	Piston seal	O-ring
6 [0.236]	NY-6 \times 3 \times 2	COP-6L	8.4×6×1.2
10 [0.394]	NY-8 \times 5 \times 2	COP-10L	10×7.6×1.2
16 [0.630]	NY-9×6×2	COP-16L	16×13×1.5

• Side mount BDA Bore size X Stroke

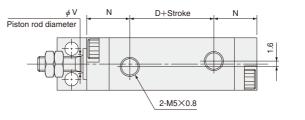


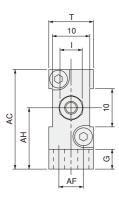
φ6

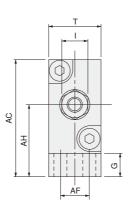

10

s 0

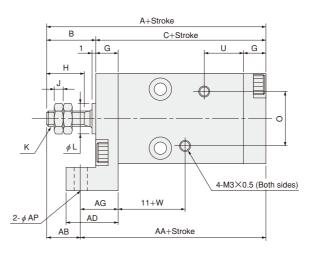
BDA- Bore size



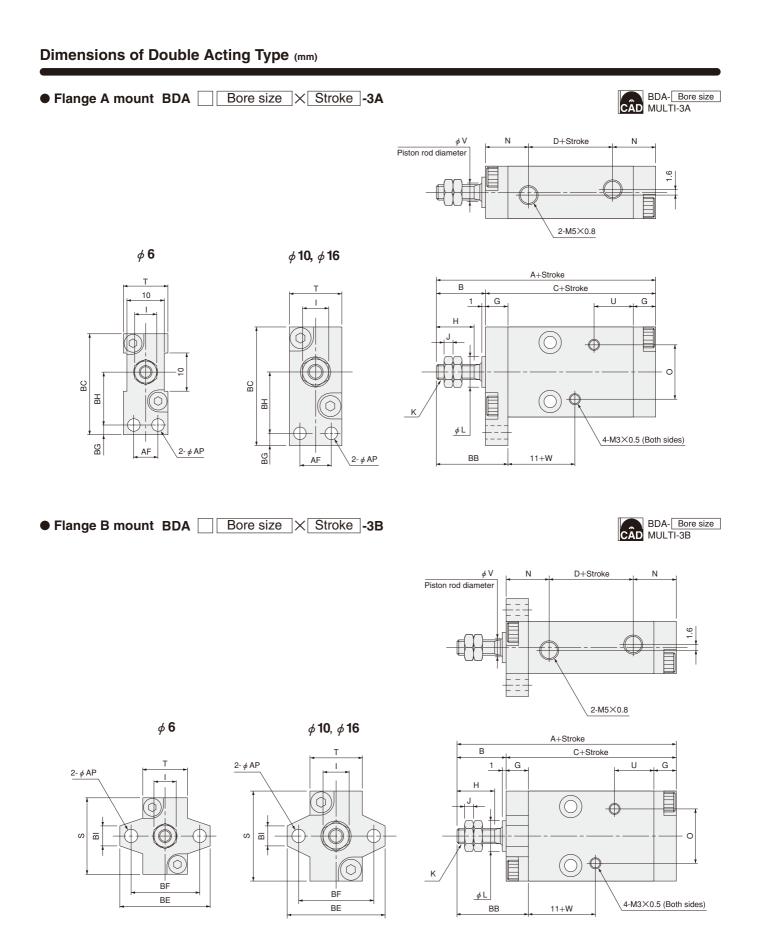

φ**6**


Туре	Star	ndard	cylir	nder	Cylin	der w	ith ma	ignet																				
Code Bore mm [in.]	A	с	D	М	A	с	D	М	В	G	н	I	J	к	L	N	0	Р	Q	R	S	т	U	v	w	х	Y	z
6 [0.236]	38	28	8	12	43	33	13	17	10	5	7	5.5	1.8	M3×0.5	6 _0_05	10	14	ϕ 3.5 Counterbore ϕ 6 Depth4.2 (Both sides)	15	7	20	12		3	6.5	26	12	16
10 [0.394]	43	30	7	13	48	35	12	18	13	6	10	7	2.4	M4×0.7	8 _0_05	11.5	15		18	8	24	14	10.5	5	0.5	30	16	17
16 [0.630]	48	33	8	15	53	38	13	20	15	7	12	8	3.2	M5×0.8	10 _0.05	12.5	19		25	12	33	20		6	7.5	33	24	18

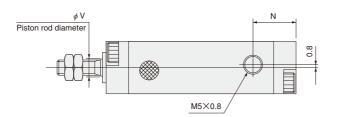
Foot A mount BDA	B	ore size	$ \times $	Stroke	-1A
------------------	---	----------	------------	--------	-----



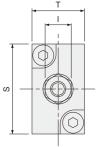
φ**6**

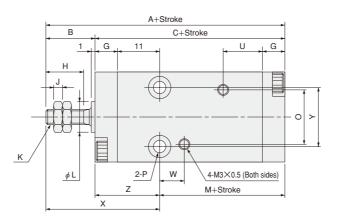

φ **10**, φ **16**

Туре	Sta	ndard	l cylir	nder	Cylir	nder w	ith ma	gnet																				
Code Bore mm [in.]	A	с	D	AA	A	С	D	AA	В	G	Н	I	J	к	L	N	0	Т	U	۷	w	AB	AC	AD	AF	AG	AH	AP
6 [0.236]	38	28	8	32	43	33	13	37	10	5	7	5.5	1.8	M3×0.5	6 _0_05	10	14	12		3	C F	6	26	13	6	9	16	2 5
10 [0.394]	43	30	7	34	48	35	12	39	13	6	10	7	2.4	$M4 \times 0.7$	8 _0_05	11.5	15	14	10.5	5	6.5	9	31	14	8	10	19	3.5
16 [0.630]	48	33	8	38	53	38	13	43	15	7	12	8	3.2	M5×0.8	10 _0_05	12.5	19	20		6	7.5	10	41.5	17	12	12	25	4.5

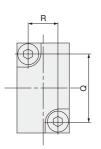

Note: The 4-M3 × 0.5 female thread (for sensor switch mounting) in the drawing should not be used for mounting the cylinder. Moreover, it is not available in the cylinder body of a standard 5mm [0.197in.] stroke cylinder.

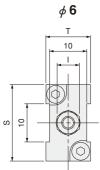
MULTI MOUNT CYLINDERS




Туре	Stand	lard cy	linder	Cylind	er with n	nagnet																							
Code Bore mm [in.]	A	с	D	A	с	D	в	G	Н	I	J	к	L	Ν	0	S	т	U	v	w	AF	AP	BB	вс	BE	BF	BG	BH	BI
6 [0.236]	38	28	8	43	33	13	10	5	7	5.5	1.8	M3×0.5	6_0_05	10	14	20	12		3	6.5	6	3.5	15	27.5	24	18	3.5	14	E
10 [0.394]	43	30	7	48	35	12	13	6	10	7	2.4	M4×0.7	8_0_05	11.5	15	24	14	10.5	5	0.5	8	3.5	19	31.5	26	20	3.5	16	5
16 [0.630]	48	33	8	53	38	13	15	7	12	8	3.2	M5×0.8	$10_{-0.05}^{0}$	12.5	19	33	20		6	7.5	12	4.5	22	42	36	28	4.5	21	6

• Side mount BSA Bore size X Stroke





CÂD

R	1
	μ σ

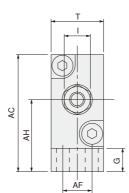
φ6

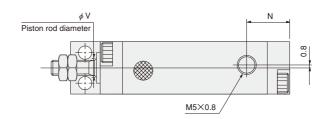
Туре	Stand	lard cy	linder	Cylinde	er with r	nagnet																				
Code Bore mm [in.]	A	с	М	A	с	М	В	G	н	I	J	к	L	Ν	0	Р	Q	R	S	т	U	v	w	х	Y	z
6 [0.236]	43	33	17	48	38	22	10	5	7	5.5	1.8	M3×0.5	6 _0.05	10	14	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	15	7	20	12		3	C E	26	12	16
10 [0.394]	48	35	18	53	40	23	13	6	10	7	2.4	M4×0.7	8 _0.05	11.5	15	\$\$\phi\$ 3.5 Counterbore \$\$\phi\$ 6 Depth3.2 (Both sides)	18	8	24	14	10.5	5	6.5	30	16	17
16 [0.630]	53	38	20	58	43	25	15	7	12	8	3.2	M5×0.8	10 _0.05	12.5	19	ϕ 4.5 Counterbore ϕ 7.6 Depth4.2 (Both sides)	25	12	33	20		6	7.5	33	24	18

Note: The 4-M3 × 0.5 female thread (for sensor switch mounting) in the drawing should not be used for mounting the cylinder. Moreover, it is not available in the cylinder body of a standard 5mm [0.197in.] stroke cylinder.

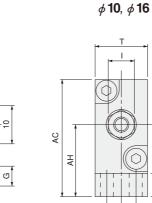
BSA- Bore size

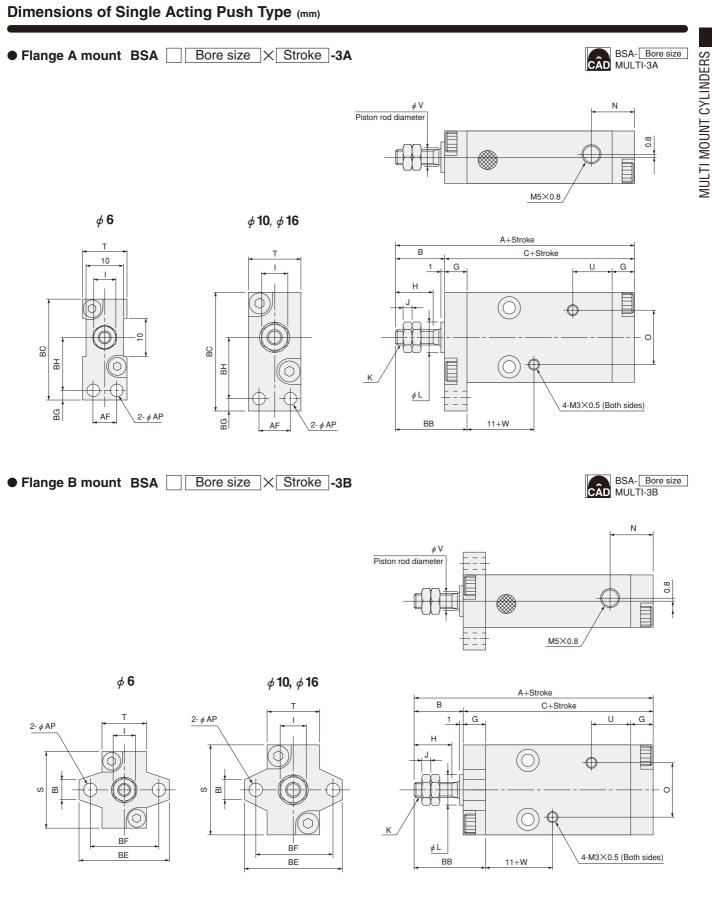
Foot A mount BSA		Bore size	$]\times$	Stroke	-1A
------------------	--	-----------	-----------	--------	-----


В C+Stroke G U G 1 Έ 0 Κ φL E 4-M3×0.5 (Both sides) 11+W AG 2- *φ* AP AD AA+Stroke AB


Туре	Stand	dard cy	linder	Cylind	er with r	magnet																				
Code Bore mm [in.]	A	с	AA	A	С	AA	В	G	Η	I	J	К	L	N	0	т	U	v	w	AB	AC	AD	AF	AG	AH	AP
6 [0.236]	43	33	37	48	38	42	10	5	7	5.5	1.8	M3×0.5	6 _0_05	10	14	12		3	C E	6	26	13	6	9	16	2 5
10 [0.394]	48	35	39	53	40	44	13	6	10	7	2.4	M4×0.7	8 _0_05	11.5	15	14	10.5	5	6.5	9	31	14	8	10	19	3.5
16 [0.630]	53	38	43	58	43	48	15	7	12	8	3.2	M5×0.8	10 _0.05	12.5	19	20		6	7.5	10	41.5	17	12	12	25	4.5

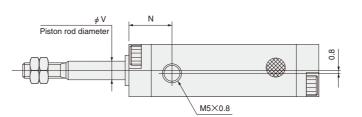
Note: The 4-M3 × 0.5 female thread (for sensor switch mounting) in the drawing should not be used for mounting the cylinder. Moreover, it is not available in the cylinder body of a standard 5mm [0.197in.] stroke cylinder.

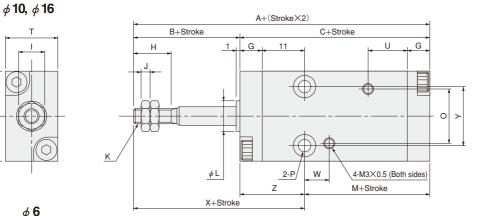

AF

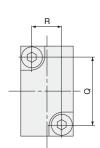


A+Stroke

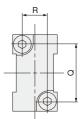
BSA- Bore size CAD MULTI-1A




Туре	Standard	l cylinder	Cylinder wi	th magnet																							
Code Bore mm [in.]	A	с	Α	с	в	G	н	Ι	J	к	L	N	0	S	т	U	۷	w	AF	AP	BB	вс	BE	BF	BG	BH	BI
6 [0.236]	43	33	48	38	10	5	7	5.5	1.8	M3×0.5	6 _0_05	10	14	20	12		3	C F	6	0 F	15	27.5	24	18	3.5	14	E
10 [0.394]	48	35	53	40	13	6	10	7	2.4	M4×0.7	8 _{-0.05}	11.5	15	24	14	10.5	5	6.5	8	3.5	19	31.5	26	20	3.5	16	5
16 [0.630]	53	38	58	43	15	7	12	8	3.2	M5×0.8	10 _0.05	12.5	19	33	20		6	7.5	12	4.5	22	42	36	28	4.5	21	6


• Side mount BTA Bore size X Stroke

cylinder body of a standard 5mm [0.197in.] stroke cylinder.



φ **10**, φ **16**

φ**6**

Туре	Stand	lard cy	linder	Cylinde	er with r	magnet																				
Code Bore mm [in.]	A	с	м	A	с	м	В	G	н	I	J	к	L	Ν	0	Р	Q	R	S	т	U	v	w	x	Y	z
6 [0.236]	43	33	17	48	38	22	10	5	7	5.5	1.8	M3×0.5	6 _0_05	10	14	\$\$\phi 3.5 Counterbore \$\$\phi 6\$ Depth4.2 (Both sides)	15	7	20	12		3	C F	26	12	16
10 [0.394]	48	35	18	53	40	23	13	6	10	7	2.4	M4×0.7	8 _0_05	11.5	15	\$ 3.5 Counterbore \$	18	8	24	14	10.5	5	6.5	30	16	17
16 [0.630]	53	38	20	58	43	25	15	7	12	8	3.2	M5×0.8	10 _0_05	12.5	19	φ 4.5 Counterbore φ 7.6 Depth4.2 (Both sides)	25	12	33	20		6	7.5	33	24	18

φ6 Т 10 I 10 S $(\oplus$

S

Т

J

AF

● Foot A mount BTA	Bore size X Strok	Ke -1A BTA- Bore size MULTI-1A
		A BTABore size SUBTRACT MULTI-1A
φ6	φ 10 , φ 16	A / (State X2)
		$\begin{array}{c c} & A+(Stroke \times 2) \\ \hline \\ \hline \\ B+Stroke & C+Stroke \\ \hline \\ H & 1 \\ \hline \\ H & 1 \\ \hline \\ H & 0 \\ \hline \\ H & $
HH HH	AH	

G

ΑF

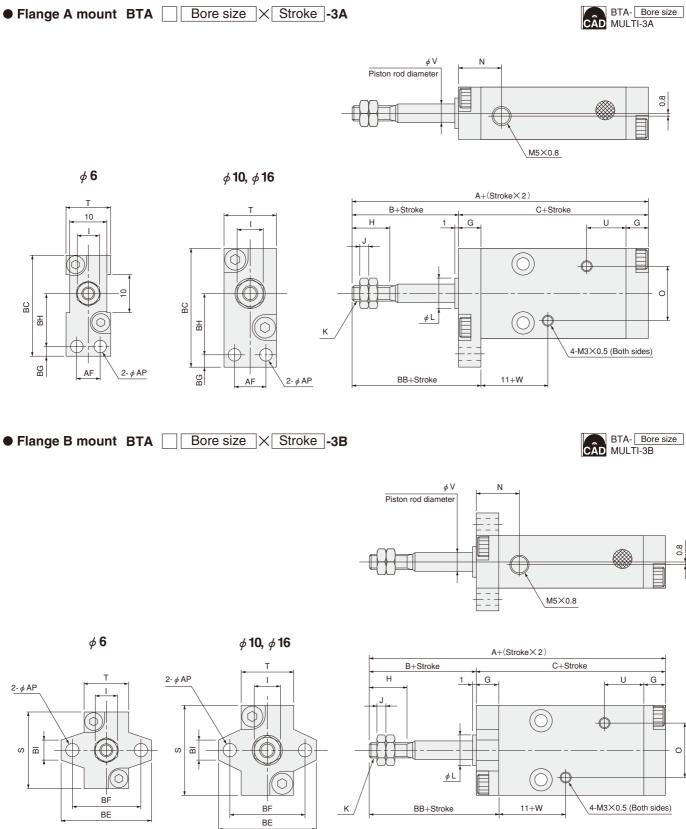
Туре	Stand	dard cy	linder	Cylind	ler with n	nagnet																				
Code Bore mm [in.]	A	с	AA	A	с	AA	В	G	Н	I	J	к	L	N	0	Т	U	V	w	AB	AC	AD	AF	AG	AH	AP
6 [0.236]	43	33	37	48	38	42	10	5	7	5.5	1.8	M3×0.5	6 _0_05	10	14	12		3	6.5	6	26	13	6	9	16	3.5
10 [0.394]	48	35	39	53	40	44	13	6	10	7	2.4	M4×0.7	8 _0.05	11.5	15	14	10.5	5	0.5	9	31	14	8	10	19	3.5
16 [0.630]	53	38	43	58	43	48	15	7	12	8	3.2	M5×0.8	10 _0.05	12.5	19	20		6	7.5	10	41.5	17	12	12	25	4.5

Note: The 4-M3 × 0.5 female thread (for sensor switch mounting) in the drawing should not be used for mounting the cylinder. Moreover, it is not available in the cylinder body of a standard 5mm [0.197in.] stroke cylinder.

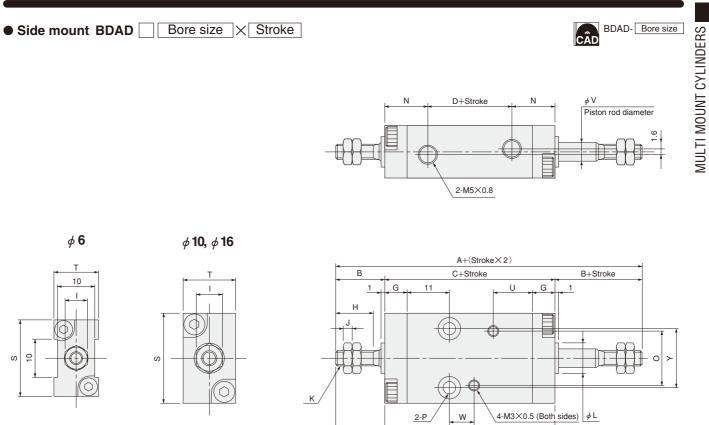
4-M3×0.5 (Both sides)

11+W

AA+Stroke

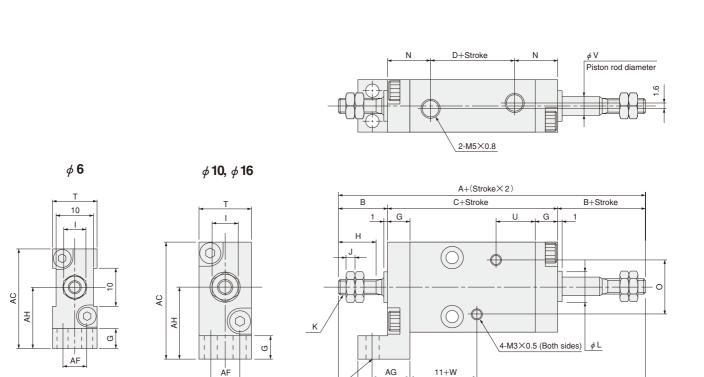

AG

AD


2- *φ* AP

AB+Stroke

Туре	Standard	l cylinder	Cylinder w	ith magnet																							
Code Bore mm [in.]	A	с	A	С	в	G	н	I	J	к	L	N	0	S	Т	U	۷	w	AF	AP	BB	вс	BE	BF	BG	BH	BI
6 [0.236]	43	33	48	38	10	5	7	5.5	1.8	M3×0.5	6 _0_05	10	14	20	12		3	6.5	6	0 E	15	27.5	24	18	3.5	14	E
10 [0.394]	48	35	53	40	13	6	10	7	2.4	M4×0.7	8 _0.05	11.5	15	24	14	10.5	5	0.5	8	3.5	19	31.5	26	20	3.5	16	5
16 [0.630]	53	38	58	43	15	7	12	8	3.2	M5×0.8	10 _0.05	12.5	19	33	20		6	7.5	12	4.5	22	42	36	28	4.5	21	6



M+Stroke

Z

Туре	Sta	ndarc	l cylir	nder	Cylin	ider w	ith ma	agnet																		
Code Bore mm [in.]	Α	с	D	м	A	с	D	М	в	G	н	I	J	к	L	N	0	Р	S	т	U	v	w	Х	Y	z
6 [0.236]	48	28	8	12	53	33	13	17	10	5	7	5.5	1.8	M3×0.5	6 _0.05	10	14	ϕ 3.5 Counterbore ϕ 6 Depth4.2 (Both sides)	20	12		3	6.5	26	12	16
10 [0.394]	56	30	7	13	61	35	12	18	13	6	10	7	2.4	M4×0.7	8 _0_05	11.5	15	ϕ 3.5 Counterbore ϕ 6 Depth3.2 (Both sides)	24	14	10.5	5	0.0	30	16	17
16 [0.630]	63	33	8	15	68	38	13	20	15	7	12	8	3.2	M5×0.8	10 _0.05	12.5	19	\$\$\phi 4.5 Counterbore \$\$\phi 7.6 Depth4.2 (Both sides)\$\$	33	20		6	7.5	33	24	18

• Foot A mount BDAD Bore size X Stroke -1A

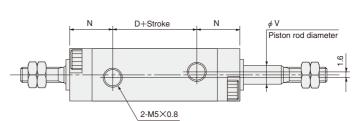
2- *φ* AP

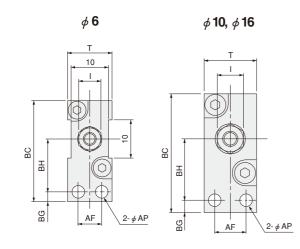
AD

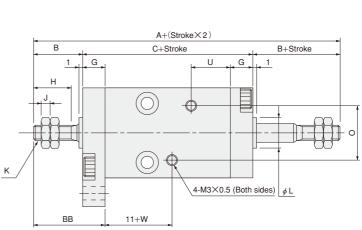
AB

 $AA+(Stroke \times 2)$

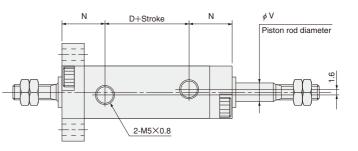
BDAD- Bore size MULTI-1A


Туре	Sta	Indarc	d cylin	der	Cylii	nder w	ith ma	gnet																				
Code Bore mm [in.]	Α	с	D	AA	A	с	D	AA	В	G	Η	I	J	к	L	N	0	т	U	۷	w	AB	AC	AD	AF	AG	AH	AP
6 [0.236]	48	28	8	42	53	33	13	47	10	5	7	5.5	1.8	M3×0.5	6 _0_05	10	14	12		3	6.5	6	26	13	6	9	16	3.5
10 [0.394]	56	30	7	47	61	35	12	52	13	6	10	7	2.4	$M4{ imes}0.7$	8 _0_05	11.5	15	14	10.5	5	0.5	9	31	14	8	10	19	3.5
16 [0.630]	63	33	8	53	68	38	13	58	15	7	12	8	3.2	M5×0.8	10 _0.05	12.5	19	20		6	7.5	10	41.5	17	12	12	25	4.5

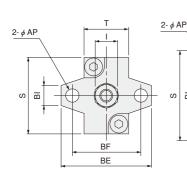

BDAD- Bore size MULTI-3A

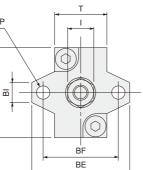

CÂD

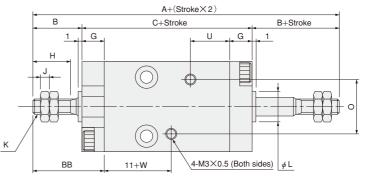
• Flange A mount BDAD Bore size X Stroke -3A



● Flange B mount BDAD Bore size × Stroke -3B


S


BDAD- Bore size CÂD MULTI-3B



φ**6**

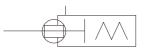
φ **10**, φ **16**

Туре	Stand	ard cy	linder	Cylind	er with n	nagnet																							
Code Bore mm [in.]	A	с	D	A	с	D	в	G	н	I	J	к	L	Ν	0	S	т	U	v	w	AF	AP	BB	BC	BE	BF	BG	BH	BI
6 [0.236]	48	28	8	53	33	13	10	5	7	5.5	1.8	M3×0.5	6_0_05	10	14	20	12		3	6.5	6	3.5	15	27.5	24	18	3.5	14	6
10 [0.394]	56	30	7	61	35	12	13	6	10	7	2.4	M4×0.7	8_0_05	11.5	15	24	14	10.5	5	0.5	8	3.5	19	31.5	26	20	3.5	16	5
16 [0.630]	63	33	8	68	38	13	15	7	12	8	3.2	M5×0.8	$10_{-0.05}^{0}$	12.5	19	33	20		6	7.5	12	4.5	22	42	36	28	4.5	21	6

MULTI MOUNT CYLINDERS


Non-rotating Cylinders

Symbols


Double acting type (BDAL)

Single acting push type (BSAL)

Single acting pull type (BTAL) Double acting double rod type (BDADL)

Cylinder Thrust

										Ν	۱ [lbf.]
Bore size	Piston rod	Opera	tion	Pressure area		Air	oressi	ure I	MPa [psi.]	
mm [in.]	diameter mm [in.]	type		mm ² [in. ²]	0.1 [15]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]	0.6 [87]	0.7 [102]
		Double	Push side	28.2 [0.0437]	-	5.6 [1.26]	8.5 [1.91]	11.3 [2.54]	14.1 [3.17]	16.9 [3.80]	19.7 [4.43]
6	3	acting type	Pull side	21.2 [0.0329]	_	4.2 [0.94]	6.4 [1.44]	8.5 [1.91]	10.6 [2.38]	12.7 [2.85]	14.8 [3.33]
[0.236]	[0.118]	Single acting p	oush type	28.2 [0.0437]	_	5.6 [1.26]	8.5 [1.91]	11.3 [2.54]	14.1 [3.17]	16.9 [3.80]	19.7 [4.43]
		Single acting p	oull type	21.2 [0.0329]	_	-	6.4 [1.44]	8.5 [1.91]	10.6 [2.38]	12.7 [2.85]	14.8 [3.33]
		Double	Push side	78.5 [0.1217]	7.9 [1.78]	15.7 [3.53]	23.6 [5.31]	31.4 [7.06]	39.3 [8.83]	47.1 [10.59]	55 [12.36]
10	5	acting type	Pull side	58.9 [0.0913]	5.9 [1.33]	11.8 [2.65]	17.7 [3.98]	23.6 [5.31]	29.5 [6.63]	35.3 [7.94]	41.2 [9.26]
[0.394]	[0.197]	Single acting p	oush type	78.5 [0.1217]	_	15.7 [3.53]	23.6 [5.31]	31.4 [7.06]	39.3 [8.83]	47.1 [10.59]	55 [12.36]
		Single acting p	oull type	58.9 [0.0913]	-	11.8 [2.65]	17.7 [3.98]	23.6 [5.31]	29.5 [6.63]	35.3 [7.94]	41.2 [9.26]
		Double	Push side	201 [0.312]	20.1 [4.52]	40.2 [9.04]	60.3 [13.56]	80.4 [18.07]	100.5 [22.59]	120.6 [27.11]	140.7 [31.63]
16	6	acting type	Pull side	172 [0.267]	17.2 [3.87]	34.4 [7.73]	51.6 [11.60]	68.8 [15.47]	86 [19.33]	103.2 [23.20]	120.4 [27.07]
[0.630]	[0.236]	Single acting push type		201 [0.312]	-	40.2 [9.04]	60.3 [13.56]	80.4 [18.07]	100.5 [22.59]	120.6 [27.11]	140.7 [31.63]
		Single acting pull type		172 [0.267]	_	34.4 [7.73]	51.6 [11.60]	68.8 [15.47]	86 [19.33]	103.2 [23.20]	120.4 [27.07]

Note: For the double acting double rod type, see the double acting type pull side.

Spring Return Force (Only for Single Acting Type)

				N [lbf.]
Item		Zero stroke		End of stroke
Bore size mm [in.]	5	10	15	5, 10, 15
6 [0.236]	3.9 [0.88]	2.9 [0.65]	2.0 [0.45]	4.9 [1.10]
10 [0.394]	6.9 [1.55]	4.9 [1.10]	2.9 [0.65]	9.8 [2.20]
16 [0.630]	17.7 [3.98]	13.7 [3.08]	9.8 [2.20]	21.6 [4.86]

Specifications

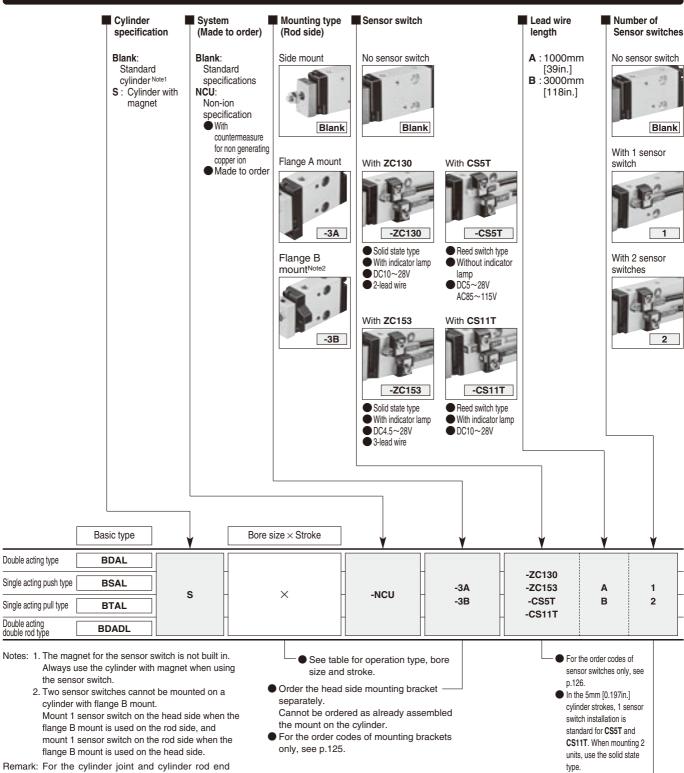
Bor	e size mm [in.]	6 [0.236]	10 [0.394]	16 [0.630]			
Media			Air				
	Double acting type	0.2~0.7 [29~102]	0.15~0.7 [22~102]	0.1~0.7 [15~102]			
Operating pressure range	Single acting push type	0.25~0.7 [36~102]	0.2~0.7 [29~102]	0.15~0.7 [22~102]			
MPa [psi.]	Single acting pull type	0.35~0.7 [51~102]	0.25~0.7 [36~102]	0.2~0.7 [29~102]			
	Double acting double rod type	0.2~0.7 [29~102]	0.15~0.7 [22~102]	0.1~0.7 [15~102]			
Proof pressure	MPa [psi.]		1.03 [149]				
Operating temperature r	ange °C [°F]	0	~60 [32~140)]			
Operating speed rang	ge mm/s [in./sec.]	50	~500 [2.0~19	9.7]			
Cushion		F	Rubber bumpe	r			
Lubrication		Not required (If lubrication is required, use Turbine Oil Class 1 [ISO VG32] or equivalent.					
Non-rotating acc	uracy	$\pm 2^{\circ}$ $\pm 1.5^{\circ}$ $\pm 1^{\circ}$					
Port size		M5×0.8					
Stroke tolerance	mm [in.]	n.] +1 [+0.039]					

Operation Type, Bore Size, and Stroke

		mm
Operation type	Bore size	Standard strokes
	6	
Double acting type	10	5, 10, 15, 20, 25, 30
	16	
	6	
Single acting push type Single acting pull type	10	5, 10, 15
Chilgle deting pair type	16	
	6	
Double acting double rod type	10	5, 10, 15, 20, 25, 30
	16	

Double acting type	Single acting push type	Single acting pull type	Double acting double rod type
Page where dimensions are shown ————————————————————————————————————			
BDAL	BSAL	BTAL	BDADL

Mass


												g [oz.
	_		Mass of s	ide mount				al mass				
Operation	Bore size	Stroke	Standard	Cylinder	Double	With 1 sensor switch		e mounting			le mounting	g bracket
type	mm [in.]	mm	cylinder	with magnet	rod	(including mounting bracket) ZC130 ZC153 CS5T CS11T	Foot A Note mount	Flange A mount	Flange B mount	Foot A mount	Flange A mount	Flange B mount
		5	31 [1.09]	34 [1.20]								
		10	34 [1.20]	37 [1.31]								
	6	15	37 [1.31]	40 [1.41]			10 10 051			45 10 501	5 (0.101	F [0, (0]
	[0.236]	20	40 [1.41]	43 [1.52]	4 [0.14]	20 [0.71]	10 [0.35]	1 [0.04]	1 [0.04]	15 [0.53]	5 [0.18]	5 [0.18]
		25	43 [1.52]	46 [1.62]								
		30	46 [1.62]	49 [1.73]								
e		5	51 [1.80]	57 [2.01]								
1 typ		10	55 [1.94]	61 [2.15]								
Double acting type	10	15	59 [2.08]	65 [2.29]	0 10 001	00 [0 74]	10 [0 50]	0 [0 07]	0 [0 07]	04 [0.05]	0 [0 00]	0 [0 00]
e ac	[0.394]	20	63 [2.22]	69 [2.43]	8 [0.28]	20 [0.71]	16 [0.56]	2 [0.07]	2 [0.07]	24 [0.85]	8 [0.28]	8 [0.28]
Iqno		25	67 [2.36]	73 [2.57]								
Ď		30	71 [2.50]	77 [2.72]								
		5	104 [3.67]	117 [4.13]								
		10	111 [3.92]	124 [4.37]								
	16	15	118 [4.16]	131 [4.62]		00 [0 71]	00 [1 10]	4 [0 4 4]	4 [0 4 4]	FO [4 07]	17 [0 00]	17 [0 00]
	[0.630]	20	125 [4.41]	138 [4.87]	16 [0.56]	20 [0.71]	33 [1.16]	4 [0.14]	4 [0.14]	53 [1.87]	17 [0.60]	17 [0.60]
		25	132 [4.66]	145 [5.11]								
		30	139 [4.90]	152 [5.36]								
		5	35 [1.23]	38 [1.34]								
e	6 [0.236]	10	38 [1.34]	41 [1.45]	—	20 [0.71]	_	1 [0.04]	1 [0.04]	15 [0.53]	5 [0.18]	5 [0.18]
h ty	[0.230]	15	41 [1.45]	44 [1.55]								
snd		5	57 [2.01]	63 [2.22]								
bu	10 [0.394]	10	61 [2.15]	67 [2.36]	—	20 [0.71]	_	2 [0.07]	2 [0.07]	24 [0.85]	8 [0.28]	8 [0.28]
acti	[0.334]	15	65 [2.29]	71 [2.50]								
Single acting push type	10	5	115 [4.06]	128 [4.51]								
Sir	16 [0.630]	10	122 [4.30]	135 [4.76]	—	20 [0.71]	-	4 [0.14]	4 [0.14]	53 [1.87]	17 [0.60]	17 [0.60]
	[0.000]	15	129 [4.55]	142 [5.01]								
	6	5	37 [1.31]	40 [1.41]								
e	6 [0.236]	10	40 [1.41]	43 [1.52]	—	20 [0.71]	-	1 [0.04]	1 [0.04]	15 [0.53]	5 [0.18]	5 [0.18]
Single acting pull type	[0.200]	15	43 [1.52]	46 [1.62]								
Ind	40	5	60 [2.12]	66 [2.33]								
ting	10 [0.394]	10	64 [2.26]	70 [2.47]	_	20 [0.71]	-	2 [0.07]	2 [0.07]	24 [0.85]	8 [0.28]	8 [0.28]
e ac	[0.004]	15	68 [2.40]	74 [2.61]								
ngle	10	5	125 [4.41]	138 [4.87]								
õ	16 [0.630]	10	132 [4.66]	145 [5.11]	_	20 [0.71]	- 4 [0.14]	4 [0.14]	53 [1.87]	17 [0.60]	17 [0.60]	
	[0.000]	15	139 [4.90]	152 [5.36]								

Note: Can be installed only on the opposite the rod side with the non-rotation plate of a double rod cylinder. Calculation example: To add 2 sensor switches to the cylinder with magnet, double acting type BDALS10 \times 20, $69+(20\times2)=109g$ [3.84oz.]

Remark: There are 2 types of sensor switch lead wire lengths. A: 1000mm [39in.], B: 3000mm [118in.]

MULTI MOUNT CYLINDERS

Order Codes for Non-rotating Cylinders

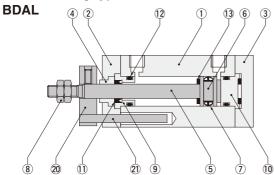
Remark: For the cylinder joint and cylinder rod end mounted on the piston rod end, see p.1568.

• In the 5mm [0.197in.] cylinder strokes, 1 sensor switch is standard for the reed switch type (CS5T, CS11T).

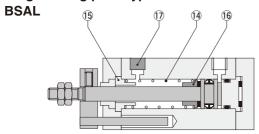
Additional Parts (To be ordered separately)

Mounting brackets

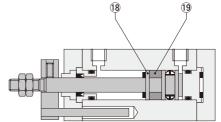
- Side mount ● Foot A mount ● Flange A Flange B mount (Head cover) mount
- The photographs above show head side mounting brackets.
- For the order codes, see p.125.
- Comes with 2 mounting screws.


- Shield plate
- For cylinder with magnet. For the order code, see
- p.128.
 - Comes with 2 mounting screws

Operation Type, Bore Size, and Stroke mm

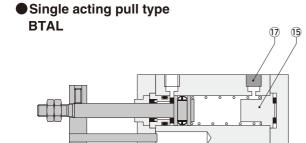

For details, see p.1544.

Operation type	Bore size	Standard strokes						
	6							
Double acting type	10	5, 10, 15, 20, 25, 30						
ijpo	16]						
Single acting	6							
push type Single acting	10	5, 10, 15						
pull type	16							
D. H. H	6							
Double acting double rod type	10	5, 10, 15, 20, 25, 30						
	16							

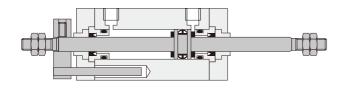

Double acting type

Single acting push type

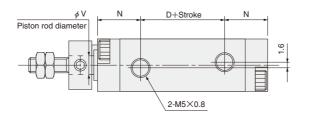
• Cylinder with magnet double acting type BDALS

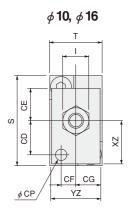

Major Parts and Materials

No.	Parts	Materi	als
INO.	Pans	Standard specification	Non-ion specification
1	Body	Aluminum alloy (anodized)	←
2	Rod cover Note	Aluminum alloy (black anodized)	←
3	Head cover Note	PBT	Aluminum alloy (black anodized
4	Rod bushing	Oil impregnated bronze	Special steel
(5)	Piston rod	Stainless steel	-
6	Piston	Brass	Aluminum
7	Piston seal	Synthetic rubber(NBR)	←
8	Rod end nut	Steel (electric nickel plated)	←
9	Seal case	Brass	Special steel
10	Сар	Polyacetal	-
1	Rod seal	Synthetic rubber (NBR)	←
12	O-ring	Synthetic rubber (NBR)	←
13	Bumper	Urethane rubber	←
14	Spring	Steel (zinc plated)	-
15	Spring holder	Brass	Aluminum
16	Collar	Brass	Aluminum
17	Filter	Foamed metal	←
(18)	Support	Brass	Aluminum
	Manual		
19	Magnet	ϕ 10, ϕ 16: Plastic magnet	-
20	Plate	Brass (electric nickel plated)	Steel (nickel plated)
(21)	Guide pin	Stainless steel	←

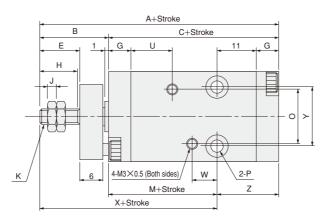

Note: Only the foot A mount is steel (black zinc plated).

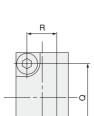
Seals


Parts Bore size mm [in.]	Rod seal	Piston seal	O-ring
6 [0.236]	NY-6×3×2	COP-6L	8.4×6×1.2
10 [0.394]	NY-8×5×2	COP-10L	10×7.6×1.2
16 [0.630]	NY-9 \times 6 \times 2	COP-16L	16×13×1.5



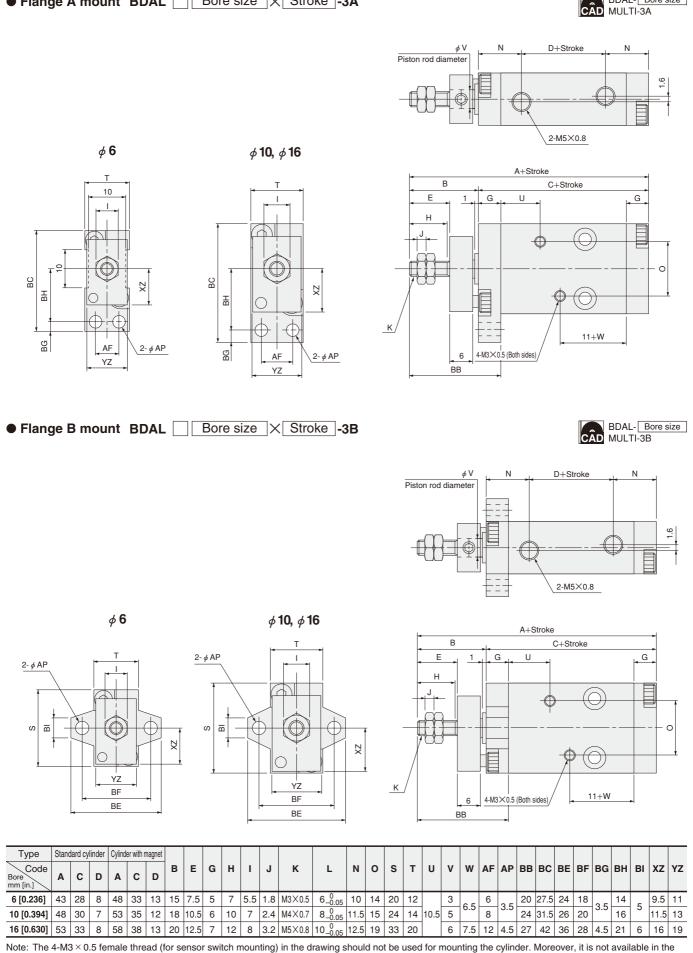
Double acting double rod type BDADL




• Side mount BDAL Bore size X Stroke

φ**6**

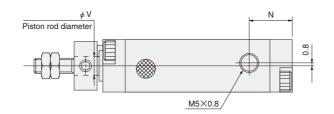
 ϕ 10, ϕ 16

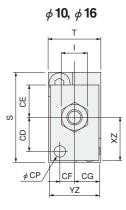

BDAL- Bore size

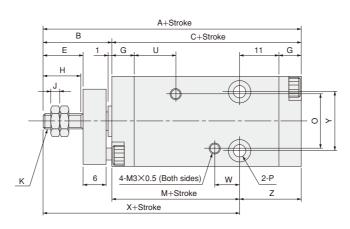
	Т
	10
1	
	4
v <u>†</u> 6	
8	
*	
¢CPCF	CG
	YZ

Туре	Sta	anda	ard c	ylind	der	Cyli	nder	with	mag	gnet																				
Code Bore mm [in.]	A	с	D	М	x	A	с	D	М	x	в	Е	G	н	I	J	к	L	Ν	0	Р	Q	R	s	т	U	۷	w	Y	z
6 [0.236]	43	28	8	12	27	48	33	13	17	32	15	7.5	5	7	5.5	1.8	M3×0.5	6 _0_05	10	14	ϕ 3.5 Counterbore ϕ 6 Depth4.2 (Both sides)	15	7	20	12		3	6.5	12	16
10 [0.394]	48	30	7	13	31	53	35	12	18	36	18	10.5	6	10	7	2.4	M4×0.7	8 _0.05	11.5	15	ϕ 3.5 Counterbore ϕ 6 Depth3.2 (Both sides)	18	8	24	14	10.5	5	0.5	16	17
16 [0.630]	53	33	8	15	35	58	38	13	20	40	20	12.5	7	12	8	3.2	M5×0.8	10 _0.05	12.5	19	\$\$\phi 4.5 Counterbore \$\$\phi 7.6 Depth4.2 (Both sides)\$\$	25	12	33	20		6	7.5	24	18

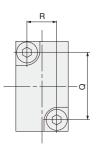
Code Bore mm [in.]	CD	CE	CF	CG	СР	xz	YZ
6 [0.236]	7.5	7.5	3.5	5.5	2.5	9.5	11
10 [0.394]	9	8.5	4	6.5	3	11.5	13
16 [0.630]	12.5	9	6	9.5	4	16	19

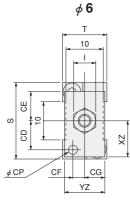

Dimensions of Non-rotating Double Acting Type (mm)

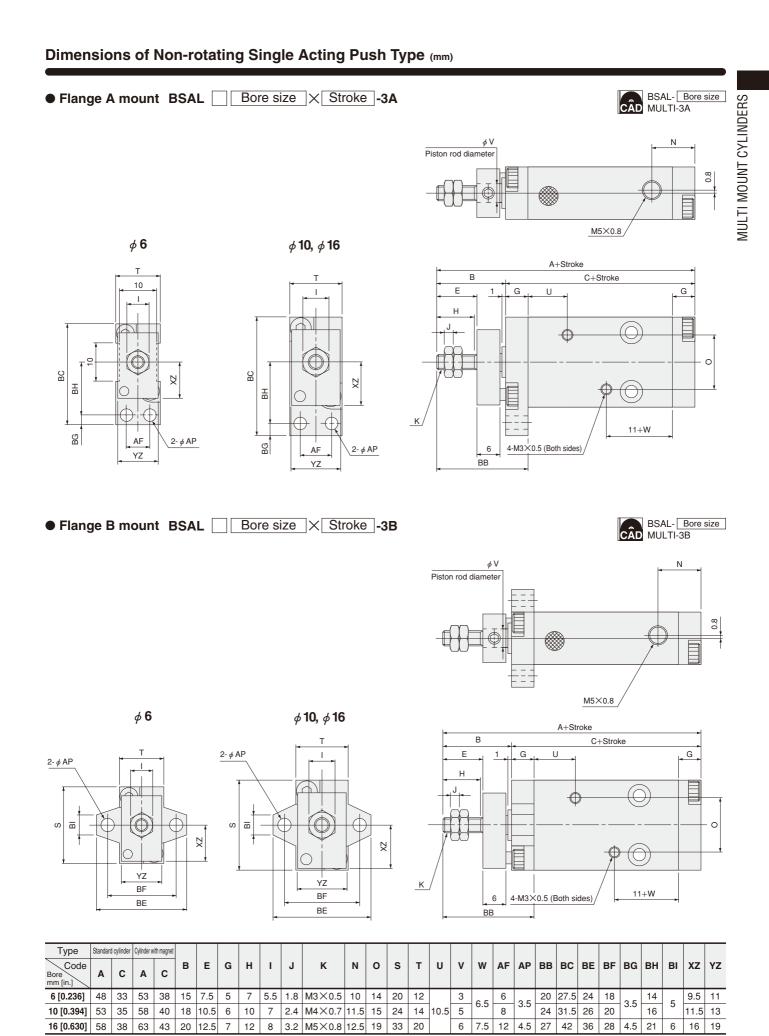

● Flange A mount BDAL Bore size × Stroke -3A


cylinder body of a standard 5mm [0.197in.] stroke cylinder.

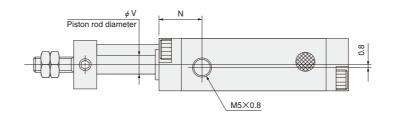
BDAL- Bore size MULTI MOUNT CYLINDERS

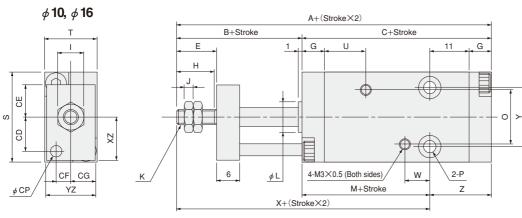

• Side mount BSAL Bore size X Stroke

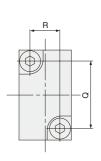




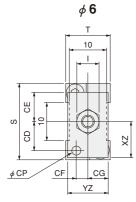
φ6


Туре	Star	ndard	l cylii	nder	Cylin	der w	ith ma	agnet																			
Code Bore mm [in.]	A	с	М	x	A	с	М	x	В	Е	G	н	I	J	К	Ν	0	Р	Q	R	S	т	U	v	w	Y	z
6 [0.236]	48	33	17	32	53	38	22	37	15	7.5	5	7	5.5	1.8	M3×0.5	10	14	ϕ 3.5 Counterbore ϕ 6 Depth4.2 (Both sides)	15	7	20	12		3	6.5	12	16
10 [0.394]	53	35	18	36	58	40	23	41	18	10.5	6	10	7	2.4	M4×0.7	11.5	15	ϕ 3.5 Counterbore ϕ 6 Depth3.2 (Both sides)	18	8	24	14	10.5	5	0.5	16	17
16 [0.630]	58	38	20	40	63	43	25	45	20	12.5	7	12	8	3.2	M5×0.8	12.5	19	ϕ 4.5 Counterbore ϕ 7.6 Depth4.2 (Both sides)	25	12	33	20		6	7.5	24	18

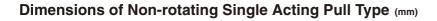

Code Bore mm [in.]	CD	CE	CF	CG	СР	xz	YZ
6 [0.236]	7.5	7.5	3.5	5.5	2.5	9.5	11
10 [0.394]	9	8.5	4	6.5	3	11.5	13
16 [0.630]	12.5	9	6	9.5	4	16	19



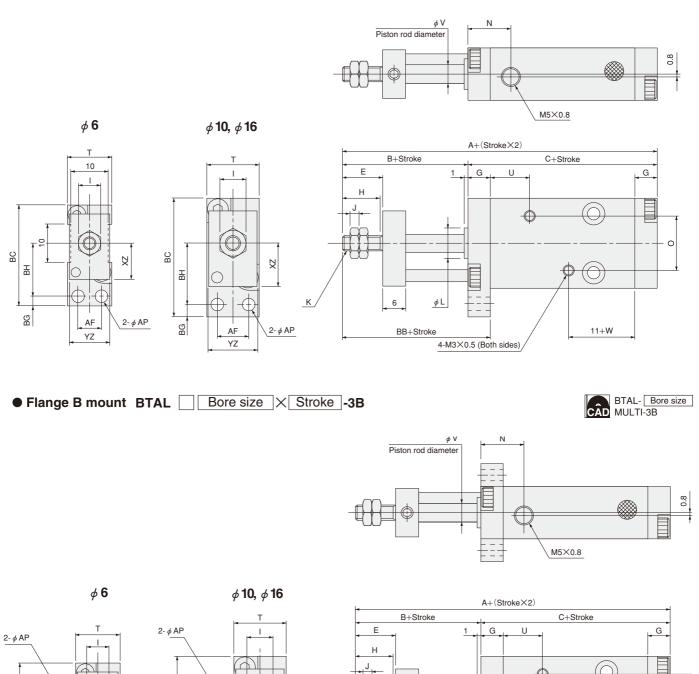
• Side mount BTAL Bore size × Stroke



φ **10**, φ **16**


 ϕ 6

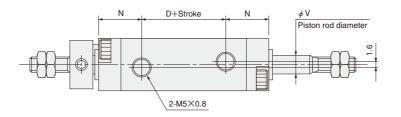
Туре	Star	ndarc	l cylii	nder	Cylin	ider w	ith ma	agnet																				
Code Bore mm [in.]	A	с	М	x	A	с	м	x	В	Е	G	н	I	J	К	L	N	0	Р	Q	R	S	т	U	v	w	Y	z
6 [0.236]	48	33	17	32	53	38	22	37	15	7.5	5	7	5.5	1.8	M3×0.5	6 _0_05	10	14	ϕ 3.5 Counterbore ϕ 6 Depth4.2 (Both sides)	15	7	20	12		3	6.5	12	16
10 [0.394]	53	35	18	36	58	40	23	41	18	10.5	6	10	7	2.4	M4×0.7	8 _{-0.05}	11.5	15	ϕ 3.5 Counterbore ϕ 6 Depth3.2 (Both sides)	18	8	24	14	10.5	5	0.5	16	17
16 [0.630]	58	38	20	40	63	43	25	45	20	12.5	7	12	8	3.2	M5×0.8	10 _0.05	12.5	19	ϕ 4.5 Counterbore ϕ 7.6 Depth4.2 (Both sides)	25	12	33	20		6	7.5	24	18

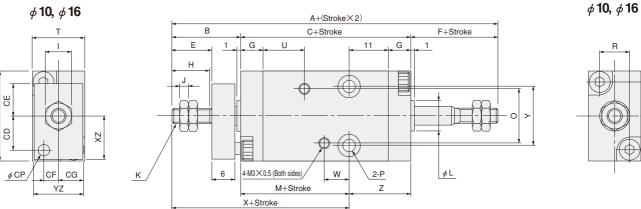

Code Bore mm [in.]	CD	CE	CF	CG	СР	xz	YZ
6 [0.236]	7.5	7.5	3.5	5.5	2.5	9.5	11
10 [0.394]	9	8.5	4	6.5	3	11.5	13
16 [0.630]	12.5	9	6	9.5	4	16	19

BTAL- Bore size MULTI-3A

CÂD

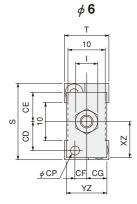
• Flange A mount BTAL Bore size X Stroke -3A

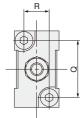



	E →		U		G,
	<u> </u>				
_		.			
			Ψ		
-	ET=				o
			-	70	
	6 Ø L		/	11+W	
	BB+Stroke				4
ł	4	4-M3×0.5 (Bc	th sides)		

Туре	Standard	l cylinder	Cylinder w	ith magnet																										
Code Bore mm [in.]	Α	с	A	с	В	Е	G	Н	I	J	К	L	N	0	S	т	U	v	w	AF	AP	BB	BC	BE	BF	BG	BH	BI	xz	ΥZ
6 [0.236]	48	33	53	38	15	7.5	5	7	5.5	1.8	M3×0.5	6 _0_05	10	14	20	12		3	6.5	6	3.5	20	27.5	24	18	3.5	14	F	9.5	11
10 [0.394]	53	35	58	40	18	10.5	6	10	7	2.4	M4×0.7	8 _{-0.05}	11.5	15	24	14	10.5	5	0.5	8	3.5	24	31.5	26	20	3.5	16	5	11.5	13
16 [0.630]	58	38	63	43	20	12.5	7	12	8	3.2	M5×0.8	$10 \ _{-0.05}^{0}$	12.5	19	33	20		6	7.5	12	4.5	27	42	36	28	4.5	21	6	16	19

• Side mount BDADL Bore size X Stroke





Ø



S

Туре	Sta	anda	rd c	ylino	der	Су	linder	r with	mag	net																					
Code Bore mm [in.]	A	с	D	М	x	A	с	D	м	x	в	Е	F	G	н	I	J	к	L	Ν	0	Р	Q	R	S	т	U	v	w	Y	z
6 [0.236]	53	28	8	12	27	58	33	13	17	32	15	7.5	10	5	7	5.5	1.8	M3×0.5	6 _{-0.05}	10	14		15	7	20	12		3	6.5	12	16
10 [0.394]	61	30	7	13	31	66	35	12	18	36	18	10.5	13	6	10	7	2.4	M4×0.7	8 _{-0.05}	11.5	15		18	8	24	14	10.5	5	0.5	16	17
16 [0.630]	68	33	8	15	35	73	38	13	20	40	20	12.5	15	7	12	8	3.2	M5×0.8	10 _0.05	12.5	19	\$\$\phi 4.5 Counterbore \$\$\phi 7.6 Depth4.2 (Both sides)\$\$	25	12	33	20		6	7.5	24	18

Code Bore mm [in.]	CD	CE	CF	CG	СР	xz	YZ
6 [0.236]	7.5	7.5	3.5	5.5	2.5	9.5	11
10 [0.394]	9	8.5	4	6.5	3	11.5	13
16 [0.630]	12.5	9	6	9.5	4	16	19

8 3.2 M5×0.8 10 ⁰_{-0.05} 12.5 19 33 20 Note: The 4-M3 × 0.5 female thread (for sensor switch mounting) in the drawing should not be used for mounting the cylinder. Moreover, it is not available in the cylinder body of a standard 5mm [0.197in.] stroke cylinder.

30 7

61

16 [0.630] 68 33

10 [0.394]

12

73 38 13 20 12.5 15

66 35

8

18 10.5 13

6 10

7 12 7 2.4

M4×0.7

8 _{-0.05} 11.5 15 24

14 10.5 5 8

12 4.5 27

6 7.5

24 31.5 26 20

42 36 28 4.5 21


16

6 16 19

11.5 13

MOUNTING BRACKETS

Rod Side Mounting Bracket, Head Side Mounting Bracket

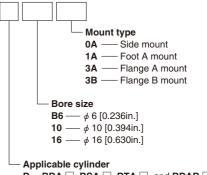
Mounting Bracket Model (Order Codes)

Mounting location	1 \ ~Uto \	Nounting brackets	Side mount	Foot A mount	Flange A mount	Flange B mount
	BDA	6 [0.236]	DB60A	DB61A	DB63A	DB63B
0	BSA BTA	10 [0.394]	D100A	D101A	D103A	D103B
side	BDAD	16 [0.630]	D160A	D161A	D163A	D163B
Rod	BDAL	6 [0.236]	LB60A	—	LB63A	LB63B
ш	BSAL	10 [0.394]	L100A	—	L103A	L103B
	BDADL	16 [0.630]	L160A	_	L163A	L163B
side	All 1	6 [0.236]	BB60A	BB61A	BB63A	BB63B
ad s	All types except double rod type	10 [0.394]	B100A	B101A	B103A	B103B
Head		16 [0.630]	B160A	B161A	B163A	B163B

Remarks: 1. All mounting brackets come with 2 mounting screws.

2. Order separately for all head side mounting brackets.

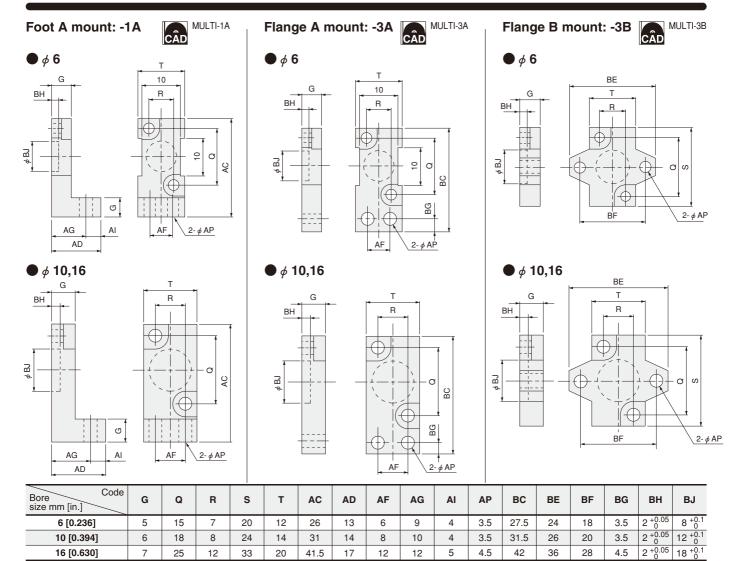
3. For the order codes of rod side mounting brackets assembled with cylinders, see p.99 and 115.


4. No rod side foot A mount for the non-rotating cylinder is available. For non-rotating double rod cylinders, however,

a separately ordered foot A mount can be installed on the rod side opposite the non-rotation plate.

5. A rod bushing is assembled into the rod side mounting bracket.

Dimensions of Head Side Mounting Bracket (mm)

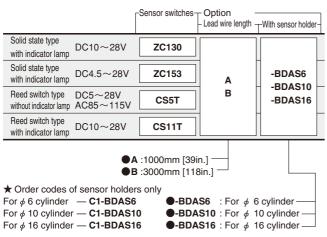


D—BDA , BSA , BTA , and BDAD (for rod side)

L-BDAL , BSAL , BTAL , and

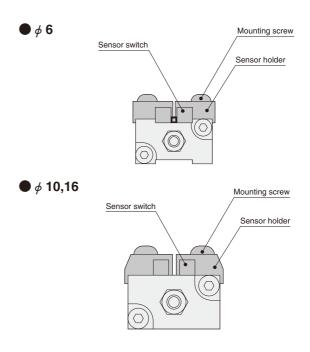
BDADL [] (for rod side)

B—All types except double rod type (for head side)


Remark: For the side mount (head cover), see the cylinder dimensions.

SENSOR SWITCHES

Solid State Type, Reed Switch Type


Order Codes (for Sensor Switches Only)

• For sensor switch details, see p.1544.

Moving Sensor Switch

- Loosening mounting screw allows the sensor switch to be moved freely in the cylinder's axial direction.
- Tighten the mounting screw with a tightening torque of 19.6N·cm [1.73in·lbf] or less.

Minimum Cylinder Strokes When Using Sensor Switches

				mm [in.]	
Bore size	Solid state type	lid state type sensor switch		Reed switch type sensor switch	
Bore size	Mounting 2 pcs.	Mounting 1 pc.	Mounting 2 pcs.	Mounting 1 pc.	
6 [0.236]					
10 [0.394]	5	5	10	5	
16 [0.630]					

Remark: Two sensor switches cannot be mounted on a cylinder with flange B mount.

Mount 1 sensor switch on the head side when the flange B mount is used on the rod side, and mount 1 sensor switch on the rod side when the flange B mount is used on the head side.

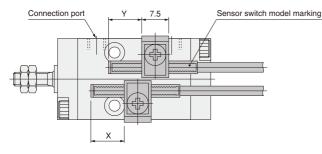
Sensor Switch Operating Range, Response Differential, and Maximum Sensing Location

Operating range: l

The distance the piston travels in one direction, while the switch is in the ON position.

Response differential: C

The distance between the point where the piston turns the switch ON, and the point where the switch is turned OFF as the piston travels in the opposite direction.


				mm [in.]
Bore size	ZC130 ,ZC153		CS5T ,CS11T	
Bore size	Operating range	Response differential	Operating range	Response differential
6 [0.236]	2.0~3.0	0.3 [0.012]	4.8~7.2	1.3 [0.051]
	[0.079~0.118]	or less	[0.189~0.283]	or less
10 [0.394]	2.0~3.0	0.3 [0.012]	5.8~8.3	2.0 [0.079]
	[0.079~0.118]	or less	[0.228~0.327]	or less
16 [0.630]	2.5~4.0	0.3 [0.012]	7.5~9.4	2.5 [0.098]
	[0.098~0.157]	or less	[0.295~0.370]	or less

Remark: The above table shows reference values.

Mounting Location of End of Stroke Detection Sensor Switch

Cylinder with magnet

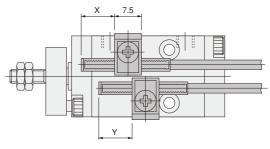
Double rod cylinder with magnet

	Double acting type (Including double rod cylinders)					
Po	re size	Mounting Sensor switch model		əl		
БО	ile size	location	ZC130 , ZC153	CS5T	CS11T	
6 [[0.236]	Х	13.0 [0.512]	11.5 [0.453]	15 [0.591]	
10	[0.394]	Y	8.0 [0.315]	6.5 [0.256]	10 [0.394]	
10	[0 6 2 0]	Х	14.0 [0.551]	12.5 [0.492]	16 [0.630]	
10	[0.630]	Y	9.0 [0.354]	7.5 [0.295]	11 [0.433]	

Single acting push type

Singl	Single acting push type mm [in.]				
Bore size	Mounting	S	ensor switch mode	el	
Dure Size	location	ZC130 , ZC153	CS5T	CS11T	
6 [0.236]	Х	8.0 [0.315]	6.5 [0.256]	10 [0.394]	
10 [0.394]	Y	8.0 [0.315]	6.5 [0.256]	10 [0.394]	
16 [0.630]	Х	9.0 [0.354]	7.5 [0.295]	11 [0.433]	
10 [0.030]	Y	9.0 [0.354]	7.5 [0.295]	11 [0.433]	

Single acting pull type


Singl	Single acting pull type mm [in.]					
Bore size	Mounting	S	Sensor switch model			
bore size	location	ZC130 , ZC153	CS5T	CS11T		
6 [0.236]	Х	13.0 [0.512]	11.5 [0.453]	15 [0.591]		
10 [0.394]	Y	13.0 [0.512]	11.5 [0.453]	15 [0.591]		
16 [0.630]	Х	14.0 [0.551]	12.5 [0.492]	16 [0.630]		
10 [0.030]	Y	14.0 [0.551]	12.5 [0.492]	16 [0.630]		

Magnet ÓN C (Response differential) C (Response differential) Maximum sensing location

Sensor switch

Non-rotating cylinder with magnet

Non-rotating double rod cylinder

Double acting type (Including double rod cylinders)	mm
---	----

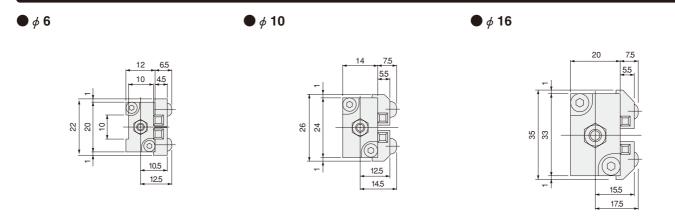
[in.]

Bore size	Mounting	ounting Sensor switch model		
Dure size	location	ZC130 ,ZC153	CS5T	CS11T
6 [0.236]	Х	6.0 [0.236]	4.5 [0.177]	8 [0.315]
10 [0.394]	Y	1.0 [0.039]	-0.5 [-0.020]	3 [0.118]
16 [0 620]	Х	7.0 [0.276]	5.5 [0.217]	9 [0.354]
16 [0.630]	Y	2.0 [0.079]	0.5 [0.020]	4 [0.157]

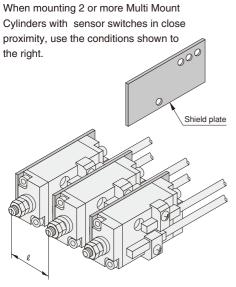
Single acting push type

Singl	Single acting push type mm [in.]				
Bore size	Mounting	Sensor switch model			
Dore Size	location	ZC130 , ZC153	CS5T	CS11T	
6 [0.236]	Х	1.0 [0.039]	-0.5 [-0.020]	3 [0.118]	
10 [0.394]	Y	1.0 [0.039]	-0.5 [-0.020]	3 [0.118]	
16 [0.630]	Х	2.0 [0.079]	0.5 [0.020]	4 [0.157]	
10 [0.030]	Y	2.0 [0.079]	0.5 [0.020]	4 [0.157]	

Single acting pull type


Singl	Single acting pull type mm [in.]				
Bore size	Mounting	unting Sensor switch model			
Dore size	location	ZC130 , ZC153	CS5T	CS11T	
6 [0.236]	Х	6.0 [0.236]	11.5 [0.453]	8 [0.315]	
10 [0.394]	Y	6.0 [0.236]	11.5 [0.453]	8 [0.315]	
16 [0 620]	Х	7.0 [0.276]	12.5 [0.492]	9 [0.354]	
16 [0.630]	Y	7.0 [0.276]	12.5 [0.492]	9 [0.354]	

Remarks: 1. The above tables give reference values for the standard strokes. For the procedure to find-out the best position, see p.129.


2. The above figures show the piping connection port when it has been turned to face upward.

3. Use the distance between the cylinder mounting hole and the rod cover to confirm the mounting location of the double rod cylinder's end of stroke detection sensor switch.

4. Mount the sensor switch so that the surface showing the sensor switch model marking faces up.

Precautions for Mounting Cylinders with Magnet

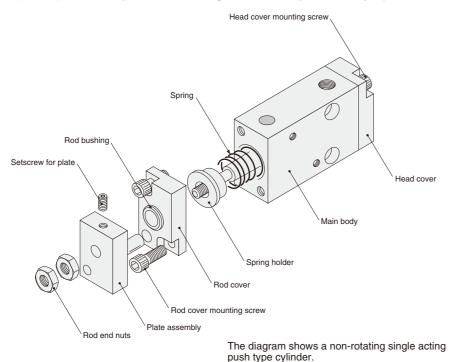
	Without sl	nield plate	With shield plate
Bore size mm [in.]			e e e e e e e e e e e e e e e e e e e
6 [0.236]	25mm [0.984] or longer	23mm [0.906] or longer	22mm [0.866] or longer
10 [0.394]	29mm [1.142] or longer	31mm [1.220] or longer	25mm [0.984] or longer
16 [0.630]	35mm [1.378] or longer	39mm [1.535] or longer	31mm [1.220] or longer

Remark: Aside from the above, there are no particular restrictions on mounting.

Shield Plate Type (Order Codes)

Operation type		Applicable shi	eld plate type	
Stroke mm	Double acting type, Dout	le acting double rod type	Single acting	push/pull type
size mm [in.]	5, 10, 15	20, 25, 30	5, 10	15
6 [0.236]	BS061	BS062	BS061	BS062
10 [0.394]	BS101	BS102	BS101	BS102
16 [0.630]	BS161	BS162	BS161	BS162

Remarks: 1. All shield plates come with 2 mounting screws. 2. Order all shield plates separately.



Replacement of mounting brackets

Rod side mounting bracket

Remove the rod end nut, loosen the rod cover (mounting bracket) mounting screws, and remove the rod cover (mounting bracket). Assemble the replacement mounting bracket by reversing the order of procedures for removal.

For non-rotating cylinders, loosen the setscrew for plate and remove the plate assembly, and remove the rod cover (mounting bracket). For assembly, align and assemble the guide pin holes of the mounting bracket and the cylinder body, insert the plate assembly, and tighten and secure the setscrew for plate against the piston rod. In this case, retract the piston rod in the fully retracted position at the head side stroke end, maintain a clearance of about 0.5mm [0.020in.] between the plate and rod bushing, and secure the plate assembly in place.

Head side mounting bracket

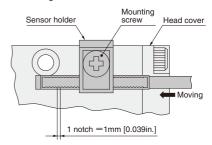
Loosen the head cover (mounting bracket) mounting screws and remove the head cover (mounting bracket). Assemble the replacement mounting bracket by reversing the order of procedures for removal.

- Cautions: 1. To increase the mounting accuracy of the side mounting, assemble so that the rod cover and head cover do not protrude from the cylinder body, and mount so that the cylinder body contacts tightly to the device.
 - 2. Use the supplied mounting screws, or when using commercial screws, use the sizes shown in the table below to secure mounting brackets in place.

Bore size mm [in.]	Screw size	Length of below head mm [in.]
6 [0.236]	M2.6×0.45	6 [0.236]
10 [0.394]	M3×0.5	8 [0.315]
16 [0.630]	M4×0.7	8 [0.315]

Refer to the figures in the table below for the tightening torque of the non-rotating cylinder's setscrew for plate, and for the size of the Allen wrench used.

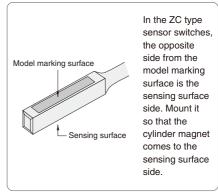
Bore size mm [in.]	Tightening torque N.cm [in.lbf]	Hexagonal bar spanner nominal size mm [in.]
6 [0.236]	49 [4.37]	1.27 [0.050]
10 [0.394]	98.1 [8.68]	1.5 [0.059]
16 [0.630]	137.3 [12.2]	2 [0.079]



Sensor switches

Procedure for finding the best sensing position

Setting the head side stroke end


- 1. Push piston rod to the fully retracted position.
- 2. Install a sensor switch in a holder without tightening a mounting screw all the way, move the switch from head side to rod side until it turns ON (for ZC130, ZC153) and CS11T, when the LED lights up), then move the switch 1 notch (= 1mm [0.039in.]) for ZC130, or 2 notches (= 2mm [0.079in.]) for CS5T, and CS11T toward the rod side, and tighten the mounting screw.

Setting the rod side stroke end

Conduct the same procedure as the head side, but on the reversed way.

- Pull piston rod to the fully extended position.
 Install a sensor switch in a holder without tightening a mounting screw all the way, move the switch from rod side to head side until it turns ON, then move the switch 1 notch (=1mm [0.039in.]) for ZC130 and ZC153 , or 2 notches (=2mm [0.079in.]) for CS5T and CS11T toward head side, and tighten the mounting screw.
- Caution when installing cylinder with sensor switch

General precautions

Piping

- 1. In applications with high load ratio or high speed, use an externally mounted stopper to prevent direct shock to the cylinder.
- 2. Use the cylinder body's $4-M3 \times 0.5$ female thread only for mounting a sensor switch or shield plate.

Piping

Always thoroughly blow off (use compressed air) the tubing before connecting it to the cylinder. Entering chips, sealing tape, rust, etc., generated during piping work could result in air leaks or other defective operation.

Atmosphere

- **1.** If using in locations subject to dripping water, dripping oil, etc., or to large amounts of dust, use a cover to protect the unit.
- 2. The product cannot be used when the media or ambient atmosphere contains any of the substances listed below.

Organic solvents, phosphate ester type hydraulic oil, sulphur dioxide, chlorine gas, or acids, etc.

Lubrication

The product can be used without lubrication, if lubrication is required, use Turbine Oil Class 1 (**ISO VG32**) or equivalent.

Avoid using spindle oil or machine oil.

Media

- 1. Use air for the media. For the use of any other media, consult us.
- 2. Air used for the cylinder should be clean air that contains no deteriorated compressor oil, etc. Install an air filter (filtration of a minimum 40 μm) near the cylinder or valve to remove collected liquid or dust. In addition, drain the air filter periodically.