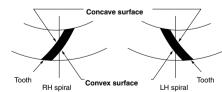

5	Specifications				
Precision grade	JIS B 1704: 1978 grade 1				
Gear teeth	Gleason				
Pressure angle	20°				
Helix angle	35°				
Material	SCM415				
Heat treatment	Carburizing				
Tooth hardness	55 ~ 60HRC				


Catalog No.	Coor rotio	ear ratio Module	No. of teeth	Direction of spiral	Shape	Bore	Hub dia.	Pitch dia.	Outside dia.	Mounting distance	Total length	Crown to back length
Catalog No.	Geal fallo					А н7	В	С	D	E	F	G
MBSG2-4020R		m2	40	R	B4	15	45	80	81.1	45	31.78	26.1
MBSG2-2040L		m2	20	L	В3	12	35	40	44.1	55	28.16	16.02
MBSG2.5-4020R		m2.5	40	R	B4	16	55	100	101.29	50	33.35	26.29
MBSG2.5-2040L	٠,	1112.3	20	L	B3	12	43	50	55.12	65	31.01	16.28
MBSG3-4020R	-	m3	40	R	B4	20	65	120	121.57	60	39.81	31.57
MBSG3-2040L			20	L	B3	16	52	60	66.03	80	38.9	21.51
MBSG4-4020R		m4	40	R	B4	25	80	160	162.06	75	48.27	37.06
MBSG4-2040L			20	L	В3	20	70	80	88.46	100	45.38	22.12

- [Caution on Product Characteristics] ① Allowable torques shown in the table are the calculated values according to the assumed usage conditions. Please see page 283 for more details.
 - ② Dimensions of the outside diameter, the overall length and crown to back length are all theoretical values, and some differences will occur due to the corner chamfering of the gear tips.
 - 3 These gears produce axial thrust forces. Please see Page 284 for more details.

* For products not categorized in our KHK Stock Gear series, custom gear production services with short lead times is available. For details see Page 8.

■ Contact Surface of Spiral Bevel Gears

Tooth surfaces of spiral gears have concave and convex sides. Changes in the rotational direction of the driving gear alter the contact surface accordingly. The illustrations show the top view of RH and LH Spiral Gears, and the tables on the right explain the different contact surface depending on the situation.

RH Spiral as a driving gear

	Rotating Direction of Driving Gear Note 1	Contact Surface					
		Driving Gear (RH Spiral)	Driving Gear (LH Spiral)				
:	RH Rotation (Clockwise)	Convex Surface	Concave Surface				
	LH rotation (counterclockwise)	Concave Surface	Convex Surface				

LH Spiral as a driving gear

Rotating Direction of	Contact Surface				
Driving Gear Note 1	Driving Gear (LH Spiral)	Driving Gear (RH Spiral)			
RH Rotation (Clockwise)	Concave Surface	Convex Surface			
LH Rotation (Counterclockwise)	Convex Surface	Concave Surface			

[Note 1] Rotation directions given in the tables are for viewing the gears from the hub side.

Hub width	Length of bore	Face width	Holding surface dia.	Allowable to	orque (N-m)	Allowable to	rque (kgf-m)	Backlash	Weight	Catalog No.	
Н	I	J	K	Bending strength Surface durability		Bending strength	Surface durability	(mm)	(kg)	Galalog IVO.	
18 13.75	29 27	14	52.7 25.39	56.5 28.2	94.2 47.1	5.76 2.88	9.61 4.80	0.04~0.10	0.57 0.18	MBSG2-4020R MBSG2-2040L	
16 13.25	30 29	17	66.99 29.97	108 54.1	184 91.8	11.0 5.52	18.7 9.37	0.05~0.11	1.01 0.31	MBSG2.5-4020R MBSG2.5-2040L	
20 18	35 36.5	20	80.28 36.56	185 92.4	318 159	18.8 9.42	32.4 16.2	0.06~0.12	1.64 0.56	MBSG3-4020R MBSG3-2040L	
22 17.5	42 43	27	106.63 51.25	441 221	778 389	45.0 22.5	79.3 39.7	0.09~0.15	3.55 1.20	MBSG4-4020R MBSG4-2040L	

①Please read "Caution on Performing Secondary Operations" (Page 284) when performing modifications and/or secondary operations for safety concerns. KHK Quick-Mod Gears, the KHK's system for quick modification of KHK stock gears is also

> ② In the illustration, the area surrounded with ---- line is masked during the carburization process and can be modified. However, care should be exercised since the hardness is high (approx. HRC40, maximum).

■ Forces Acting on Spiral Bevel Gear Teeth

For a spiral bevel gear with shaft angle $\Sigma=90^{\circ}$, pressure angle $\alpha_n=20^{\circ}$, and spiral angle $\beta_m=35^{\circ}$, the tables below show the axial thrust force Fx and the radial force Fr when a tangential force Ft of 100 units is applied at the center of face width. For details, please refer to the section "Features of Tooth Surface Contact" in separate technical reference book.

Axial Thrust Force Fx The tables show the values of Radial Force Fr

(1) Forces acting upon pinion

Contact	Gear Ratio z_2/z_1								
Surface	1.0	1.5	2.0	2.5	3.0	4.0	5.0		
Concave Surface	80.9 - 18.1	82.9 — 1.9	82.5 8.4	81.5 15.2	80.5	78.7 26.1	77.4		
Convex Surface	- 18.1 80.9	- 33.6 75.8	- 42.8 71.1	- 48.5 67.3	- 52.4 64.3	- 57.2 60.1	- 59.9 57.3		

(2) Forces acting upon gear

Contact	Gear Ratio z ₂ /z ₁									
Surface	1.0	1.5	2.0	2.5	3.0	4.0	5.0			
Concave	80.9	75.8	71.1	67.3	64.3	60.1	57.3			
Surface	- 18.1	- 33.6	- 42.8	- 48.5	- 52.4	- 57.2	- 59.9			
Convex	- 18.1	- 1.9	8.4	15.2	20.0	<u>26.1</u>	29.8			
Surface	80.9	82.9	82.5	81.5		78.7	77.4			

290