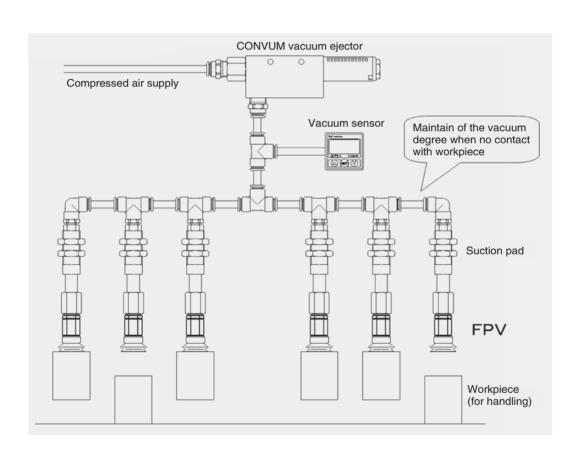
Work drop prevention check valves

FPV series

Safety handling of workpiece with several pads


Enable using one CONVUM ejector and several pads, in applications where some of the suction pads may not be in contact with the workpiece.

Maintain of suction even if no contact with workpiece

Suction is maintained even in no contact between workpiece and some of the suction pads.

Integrated filter

Filter element integrated in check valve body.

Safety instructions

WARNING

- ① In the case of porous workpiece handling, it may not be possible to handle the workpiece if there is not enough vacuum (air) flow or if there is important leakage.
- ② The quantity of FPV that may not have contact with the workpiece changes depending on using conditions. Please select suitable quantity after checking CONVUM ejector, vacuum pump specifications (vacuum flow, vacuum pressure characteristics)
- ③ FPV check valve is not a vacuum maintaining product. Do not use it in this way
- ④ Please test FPV valves in real condition on the equipment in the case that you need to check the suction with a signal by using a vacuum sensor set up between the FPV and the suction pad. As there is only few pressure variation, the vacuum degree may not be high enough to get the desired signal.
- ⑤ Please test FPV valves in real condition on the equipment in the case that you need to use 1 CONVUM ejector with several FPV valves.
- ⑥ Attachment of FPV: please attach male screw to CONVUM ejector side (vacuum source).

How to order

FPV - M5

Attachment screw (fitting side

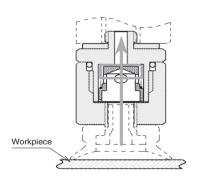
Allachin	ient screw (iitting	Side
M5	M5 × 0.8	
M6	M6 × 1.0	
R1	R1/8	
R2	R1/4	
R3	R3/8	
G1	G1/8	
G2	G1/4	
G3	G3/8	
N1	1/8-27 NPT	
N2	1/4-18 NPT	
N3	3/8-18 NPT	

Applicable pads and fittings

Reference		Applicable pa	ad
neierence	Pad s	eries	Setting screw
FPV-M5	PF10 ~ 20 PC15 ~ 20 PJ10 ~ 25 PB20	PD4 ~ 20 PA10 ~ 20A PA10 ~ 20B	TN-PF-15-M5 TN-PF-20-M5 TN-PC-10-M5 TN-PS-10-M5
FPV-M6	PF10 ~ 20 PC15 ~ 20 PJ10 ~ 25 PB20	PD4 ~ 20 PA10 ~ 20A PA10 ~ 20B	TN-PF-25-M6 TN-PF-50-M6 TN-PC-30-M6 TN-PA-30-M6
FPV-R1	PF15 ~ 50 PJ15 ~ 50		
FPV-R2			
FPV-R3			

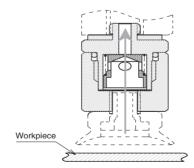
Specifications

	Description	Unit	FPV-M5	FPV-M6	FPV-R1 (FPV-G1) (FPV-N1)	FPV-R2 (FPV-G2) (FPV-N2)	FPV-R3 (FPV-G3) (FPV-N3)		
	Fluid		Non-lubricated air / non-corrosive gas						
Opera	ting pressure range		-100kPa ~ 0.6MPa						
Min. opera	n. operating vacuum (air) flow \(\ell /min(ANR) \)			10 15					
Amb	ient temperature	°C			0 ~ 60				
I	iltration rate	μm			25				
Port size	Pad size		M5	M6	Rc1/8	Rc1/4	Rc3/8		
FUIT SIZE	Fitting size		M5	M6	R1/8	R1/4	R3/8		
Mass		g	6.5	7	12	16	24		

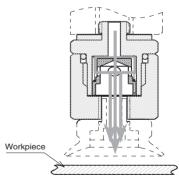

Note 1) Minimum operating vacuum (air) flow is the value required at CONVUM ejector side (vacuum source).

Note 2) Check screws details at drawing section.

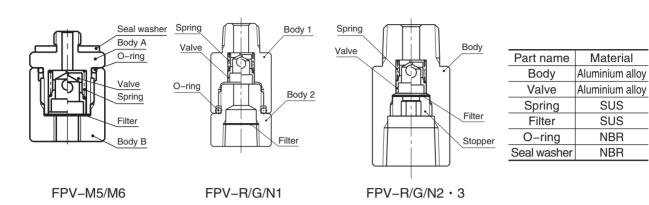
Note 3) Specifications are same for G and N threaded FPV check valves.


Operating principle

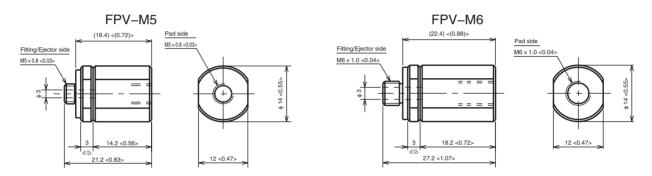
When contact with workpiece

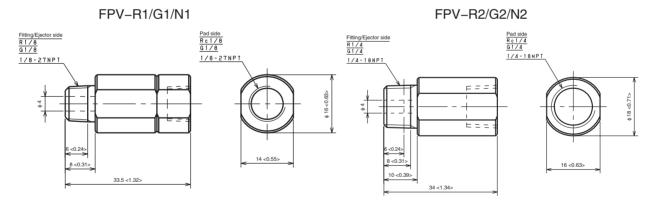

When suction pad grips the workpiece, the valve inside the circuit is pushed down by the spring and the air flow path is released between the valve and the body.

When no contact with workpiece

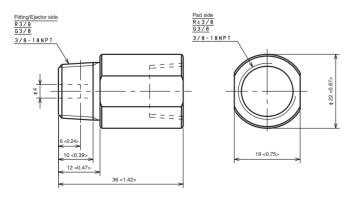

When there is no suction or when the work has been released from the pad, air flows from pad side and push up the valve. It closes the air flow path and prevent vacuum drop from ejector side. The central fine orifice let keep sucking air a little.

When releasing workpiece




When releasing the working with a blow-off, compressed air flows from the ejector side through the check valve circuit and push down the valve releasing the air flow path. It decreases the vacuum level and the work can be released.

Construction



DimensionsUnit: mm <inch>

FPV-R3/G3/N3

Selection of FPV

Selection example 1 Vacuum source: CV/MCV CONVUM ejector

The below table shows the vacuum (air) flow and vacuum pressure characteristics needed in case of using one CONVUM ejector with several FPV check valves.

Table 1 FPV Performance table

FPV model		FPV						
		M6	R1	R2	R3			
Min. operating vacuum (air) flow $[\ell / min(ANR)]$	10	10	15	15	15			
Vacuum drop rate when no contact (-kPa)	3	3	8	8	14			

- Note 1) Above table is in the case of using CV–15HS ejector. Values shown are per FPV valve.
- Note 2) Piping resistance and ejector characteristics have an effect on the vacuum degree decreasing values. Please use this data as reference
- Note 3) Please calculate the exact vacuum drop from CONVUM ejector or vacuum pump vacuum (air) flow and vacuum pressure performance graph.

Table 2 CV/MCV CONVUM ejector performance table

	CV/MCV										
CONVUM series	10		15		20		25		30A		
	HS	LS	HS	LS	HS	LS	HS	LS	HS	LS	
Maximum vacuum pressure (-kPa)	-92	-57	-92	-57	-92	-57	-92	-57	-92	-57	
Vacuum (air) flow [ℓ / min (ANR)]	27	36	63	95	110	165	160	250	225	350	

Selection example 2 Vacuum source: CDV vacuum pump

The below table shows the vacuum (air) flow and vacuum pressure characteristics needed in case of using one CONVUM ejector with several FPV check valves.

Table 5 FPV Performance table

FPV model		FPV						
		M6	R1	R2	R3			
Min. operating vacuum (air) flow $[\ell / min(ANR)]$	10	10	15	15	15			
Vacuum drop rate when no contact (-kPa)	2	2	4	4	7			

- Note 1) Above table is in the case of using CDV-3 vacuum pump. Values shown are per FPV valve.
- Note 2) Piping resistance and pump characteristics have an effect on the vacuum degree decreasing values. Please use this data as reference
- Note 3) Please calculate the exact vacuum drop from CONVUM ejector or vacuum pump vacuum (air) flow and vacuum pressure performance graph.

Table 6 CDV vacuum pump performance table

	CDV				
Vacuum pump series	3	5			
	50Hz	50Hz			
Maximum vacuum pressure (-kPa)	-89	-89			
Vacuum (air) flow $[\ell / \text{min (ANR)}]$	57	100			

Table 3

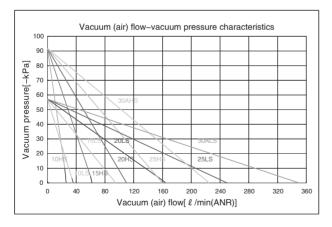
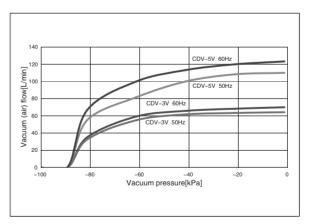



Table 7

Selection in case of using one CONVUM ejector

① We check the possible quantity of FPV without contact with workpiece

CONVUM ejector vacuum (air) flow ÷ FPV valve min. operating vacuum (air) flow = quantity of FPV valve

<Calculation>

MCV-15HS vacuum (air) flow is 63 ℓ /min (ANR), FPV-M5 min. operating vacuum (air) flow is 10 ℓ /min (ANR).

 $63 \ell / \text{min (ANR)} \div 10 \ell / \text{min (ANR)} = 6.3$

The possible quantity of FPV valve is 6 pieces for 1 CV-15HS ejector.

2 We check the maximum vacuum pressure

We check the vacuum drop rate per FPV check valve from table

1. Vacuum drop rate when no contact x FPV quantity = total vacuum drop rate. We check the maximum vacuum pressure of CONVUM ejector from table 2.

Maximum vacuum pressure – Total vacuum drop rate = Maximum vacuum pressure when using FPV check valve. <Calculation>

FPV-M5 vacuum drop rate is 3 kPa per check valve. In this case, total vacuum drop rate is 3 kPa \times 6 pcs = 18 kPa CV-15HS Maximum vacuum pressure is -92 kPa (-92 + 18) = -74 kPa

When using 6 FPV–M5 with 1 MCV–15HS, the maximum vacuum pressure is –74 kPa.

In the case of using 10 suction pads, all attached with FPV–M5, it means that if 6 of the 10 suctions pads are not in contact with workpiece, suction force of remaining 4 suctions pads is –74 kPa: handling is possible.

Table 4 Estimation of suction pad without contact with workpiece when using MCV-15HS

FPV model		FPV							
FPV model	M5	M6	R1	R2	R3				
Quantity of FPV without contact ★	6	6	4	4	2				
Vacuum pressure (kPa)	-74	-74	-60	-60	-64				

★ Note) This means the number of the pad to which FPV valves are attached with when there is no contact between the suction pad and the workpiece.

Selection in case of using one CDV vacuum pump

1 We check the possible quantity of FPV without contact with workpiece

Vacuum pump vacuum (air) flow ÷ FPV valve min. operating vacuum (air) flow = quantity of FPV valve

<Calculation>

CDV-5 vacuum (air) flow is 100 ℓ /min (ANR), FPV-R2 min. operating vacuum (air) flow is 15 ℓ /min (ANR).

 $100 \ell / min(ANR) \div 15 \ell / min(ANR) = 6.7$

The possible quantity of FPV valve is 6 pieces for 1 CDV-5 vacuum pump.

2 We check the maximum vacuum pressure

We check the vacuum drop rate per FPV check valve from table 5. vacuum drop rate when no contact x FPV quantity = total vacuum drop rate. We check the maximum vacuum pressure of CDV–5 vacuum pump from table 6.

Maximum vacuum pressure – Total vacuum drop rate = Maximum vacuum pressure when using FPV check valve. <Calculation>

FPV-R2 vacuum drop rate is 4 kPa per check valve. In this case, total vacuum drop rate is 4 kPa \times 6 pcs = 24 kPa CDV-5 maximum vacuum pressure is -89 kPa (-89 + 24) = -65 kPa

When using 6 FPV-R2 with 1 CDV-5, the maximum vacuum pressure is -65 kPa.

The conventional minimum vacuum pressure for handling is –65 kPa. In this case the maximum vacuum pressure is not enough for handling and may cause workpiece drop. Let's review the selection as below for a safety handling.

Table 8 Estimation of suction pad without contact with workpiece when using CDV-5

FPV model	FPV								
rr v illouei	M5	M6	R1	R2	R3				
Quantity of FPV without contact ★	9	9	6	6	4				
Vacuum pressure (kPa)	-71	-71	-65	-65	-61				

★ Note) This means the number of the pad to which FPV valves are attached with when there is no contact between the suction pad and the workpiece.